Предисловие
В настоящее время все большее значение приобретают разработки в области информатики – аппаратно, программно и процессорно - реализованные интеллектуальные алгоритмы обработки информации для применения их к различным технологиям интеллектуального управления. Это оказалось связанным с прогрессом применения мониторинга в экономических и в технических системах. Но эти методы получились малоэффективными. Особенно широкое применение в технической диагностике получил аппарат нечетких систем: нечеткая логика, нечеткие множества, нейронные сети, генетические алгоритмы, ассоциативная память, экспертные системы и ряд других интеллектуальных и гибридных информационных технологий, которые не применялись ранее в промышленности, строительстве, народном хозяйстве и в энергетике России.
Уже сегодня задачи, решаемые такими интеллектуальными технологиями информационных систем, в большинстве случаев, можно свести к ряду основных, т.е. государственной важности, среди которых выделяются следующие:
безаварийное, бесперебойное и эффективное энерго-использование, экологически чистое при производстве товаров народного потребления и жизнеобеспечения населения страны;
увеличение сроков службы и повышение уровня надежности работы основного и вспомогательного оборудования промышленного и энергетического производства;
повышение уровня безопасности работы в промышленных установках за счет возможности контроля состояния действующих агрегатов с помощью интуитивно – понятийного интерфейса АРМ-ов оперативно – эксплуатационного персонала, а также отдельных АРМ-ов систем и подсистем, входящих в АСУТП и АСУ технологического производства, народного и жилищно-коммунального хозяйства, использования блокировок коммутационных аппаратов и т.д.;
повышение уровня экономической эффективности и безопасности эксплуатации (и технического обслуживания) основного и вспомогательного оборудования энергетических агрегатов промышленного производства по его состоянию;
повышение качества управленческих и организационных решений в части управления жизненным циклом промышленных предприятий и жилищно-коммунального хозяйства, строительстве зданий и сооружений для поышения качества инфраструктуры городских пространств.
В данном учебном пособии представлена возможность расширить применение аппарата и методов нечетких и гибридных систем и, соответственно, углубить методологию технической диагностики в приложении к техногиям сложных технических систем, особенно в условиях ее неопределенности.
Материал в учебном пособии представлен таким образом, чтобы он соответствовал всем стадиям создания технологий интеллектуальных информационных систем и систем искусственного интеллекта.
Материалы учебного пособия частично использовались в течение нескольких последних лет при обучении студентов старших курсов НГУЭУ, магистрантов, аспирантов и слушателей курсов повышения квалификации специалистов-энергетиков при чтении автором следующих учебных курсов: «Системный анализ в энергетике», «Системы искусственного интеллекта», «Информационные интеллектуальные системы в энергетике», «Живучесть ТЭС», «АСУ ТЭС», «Нечеткие технологии», «Интеллектуальные системы и технологии», «Гибридные технологии в информационных системах» и «Специальные главы математики» на факультетах энергетики и АВТФ НГТУ, ПЭИ п.к. (г. Новосибирск), информационно-техническом факультете НГУЭУ (г. Новосибирск), академии архитектуры АРХИ (г. Новосибирск) и АСУ ТЭС ИТУ МЭИ (г. Москва).
Аннотация
Предисловие
- Предисловие
- Список использованных сокращений
- Часть 1.
- Глава 1. Математические основы формализации и методов описания
- Часть 2.
- Глава 2. Методы представления знаний с использованием
- Часть 3.
- Глава 3. Интеллектуальные технологии создания информационных систем. Способы получения информации и ее реализации для оценивания состояния агрегатов
- Часть 4.
- Глава 4. Источники информации и причины возникновения ее неопределенности
- 4.1. Переработка и использование информации в реальных условиях функционирования агрегатов
- Часть 5.
- Список использованных сокращений и обозначений
- Введение:
- Часть 1.
- Глава 1. Математические основы формализации и методов описания
- Формализация объекта и парадигмы
- 1.3. Множества и перечень базовых операций над множествами
- Перечень базовых операций над множествами
- Области определения функций
- Обратная функция
- Теорема
- Мера и нечеткая мера
- Задача построения нечетких мер
- Нечеткие множества: определение и формы записи в операциях и
- 1.7.Функции доверия и правило Демпстера а.Р.,[23]
- 1.8. Нормировка функций в теории нечётких множеств
- 1.9. Нечёткие отношения: прямая и обратная задачи
- Глава 2. Методы представления знаний с использованием приближенных и нечетких множеств
- 2.1.Нечеткие вычислительные технологии
- 2.2.Семантика объекта: определение и типизация
- 2.3.Создание Базы знаний: постановка, семантика, прагматика
- 2.4. Сопоставление объектов: постановка, семантика, прагматика
- 2.5.Распознавание объектов: постановка, семантика, прагматика
- 2.6. Управление процессом представления знаний
- Нечёткие множества: субъективность и неточность
- 2.8.Нечеткая алгебра
- 2.9.Нечеткие иерархические отношения
- 2.10.Естественность операций max и min
- 2.11.Нечеткая статистика
- 2.12. Совместимость и нечеткое ожидание
- Глава 3. Нечеткие технологии создания информационных систем. Способы получения информации и ее реализации для оценивания состояния агрегатов
- 3.2. Обработка нечетких данных как неопределенных чисел
- Методология представления агрегата в виде комплексного механизма
- 3.2.2. Описание исходной информации на языке размытых множеств
- Размытость интервалов, ограничений, критериев и целей управления в эксплуатации и диагностике
- 3.3.3. Размытые ограничения, цели и оптимизация работы агрегата в условиях нечеткой информации о состоянии
- Анализ информации для диагностики и оценивания состояния механизмов
- 3.5. Оценки погрешностей измерений и наблюдений за состоянием агрегатов
- Влияние погрешностей исходных данных на погрешности диагноза
- Глава 4. Источники информации и причины возникновения ее неопределенности
- 4. 2. Управление и идентификация на объекте в условиях неопределенности информации на основе знаний, получаемых при функциональной диагностике
- Тогда множество диагностических признаков g также будет нечетким
- 4.3.Представление и использование чётких и «размытых» знаний в математических моделях оценивания состояния агрегатов, на основе функциональной диагностики
- 4.3.1.Формализация решения задачи оценивания состояния
- 4.3.2. Особенности решения задач контроля и функционирования агрегата
- Глава 5. Введение в генетическое программирование
- 5.1. Введение в генетические и эволюционные алгоритмы
- 5.2. Сравнительный анализ эволюционных алгоритмов
- 5.3. Генетическое программирование
- 5.4. Перспективные направления развития гп
- Глава 6. Введение в нейронные сети
- 6.1. Алгоритмы их обучение и эластичные нейро-нечеткие системы
- 6.2. Имитация нервных клеток
- 6.3. Математическая модель нейрона
- 6.4. Обучение нейронных сетей
- 6.5. Метод обратного распространения ошибки
- 6.6. Алгоритм настройки нейронной сети
- Глава 7. Другие методы нечетких технологий для построения
- 7.1. Введение в теорию возможностей и смысла
- 7.1.1. Неопределенность и неточность
- 7.1.2. Традиционные модели неточности и неопределенности
- 7.1.3. Меры неопределенности
- 7.1.4. Меры возможности и необходимости
- 7.1.5. Возможность и вероятность
- 7.2. Языки и технологии логического программирования prolog, lisp
- Глава 8. Послесловие
- 8.1. Эволюция искусственного интеллекта для развития интеллектуальных
- 8.2.Экспертные системы нового уровня
- 8.3. Роботика
- 8.4. Преобразование речи искусственного языка
- 8.5. Интеллект муравьёв и его использование
- 8.6. Искусственная жизнь, мозг, познание, разум, память и мышление
- 8.7. Боты
- Optimizator подсистемы диагностики состояния энергоустановок, skais, для решения задач технического обслуживания
- Заключение
- Заключение
- Литература