2.9.Нечеткие иерархические отношения
По существу обобщением понятия эквивалентности служит понятие «сходство» введенное Заде. Отношением сходства S в Ω называется нечеткое отношение, которое:
рефлексивно, то есть = 1, тогда и только тогда, когдаx
симметрично, то есть ,;
транзитивно, то есть
Отношение несходства D можно определить как дополнение к S с функцией
Если функцию интерпретировать, какрасстояние d(х,y), то из транзитивности отношения S следует:
. (2.25)
Поскольку = 1-MAX[d(х,y),то, можнозаключить, что d(x,z)MAX,],; откуда следует неравенство треугольника.
Определим отношение близости, описывающее субъективное сходство как рефлексивное, симметричное, но необязательно транзитивное, n-местное нечеткое отношение:
, где (2.26)
кратное декартово произведение X на себя; x,y
Тогда, для всех x,y и всех , 0
Отсюда следует существование предела:
так как, в соответствии с принципом монотонной сходимости, для любого найдется такое целое числоN, что , при всехn>N.
Поскольку последовательность не убывающая и ограничена, как сверху, так и снизу, указанный предел существует в силу следующей теоремы:
Теорема1: ограниченная, неубывающая последовательность {аi} имеет предел равный наименьшему из чисел, которое не меньше любого из аj;
Определение 2: пусть x и y два элемента из множества Ω, а определенное выше,n-местное отношение.
Назовем близостью этих элементов число из отрезка [0,1], удовлетворяющее равенству:
(2.27)
Определение 3: пусть . Тогда будем говорить, чтонаходятся в пороговом отношении, тогда и только тогда, когда
Теорема 2: []
Теорема доказана.
Теорема 3: Пороговое отношение является отношением сходства на Ω.
Доказательство:
xRTx, поскольку
1=,
xRTy, тогда и только тогда, когда yRTx, так как
Из xRTy и yRTz следует xRTz, так как
Теорема доказана.
Заметим, что введение описанных выше отношений аналогично представлению о множествах α-уровня Rα отношения R (обычные четкие множества из декартова произведения X×Y), развитому Заде Л.
Теорема 4: Пусть T1тогда отношение RT порождает подразбиение, порождаемое отношением.
Доказательство:
Теорема доказана.
Легко видеть, что если и- пороговые отношения, порожденные соответственно функциями принадлежностииито разбиение появляется подразбиением разбиения поФункцияслужитфункцией расстояния, поскольку:
при
, так как
- Предисловие
- Список использованных сокращений
- Часть 1.
- Глава 1. Математические основы формализации и методов описания
- Часть 2.
- Глава 2. Методы представления знаний с использованием
- Часть 3.
- Глава 3. Интеллектуальные технологии создания информационных систем. Способы получения информации и ее реализации для оценивания состояния агрегатов
- Часть 4.
- Глава 4. Источники информации и причины возникновения ее неопределенности
- 4.1. Переработка и использование информации в реальных условиях функционирования агрегатов
- Часть 5.
- Список использованных сокращений и обозначений
- Введение:
- Часть 1.
- Глава 1. Математические основы формализации и методов описания
- Формализация объекта и парадигмы
- 1.3. Множества и перечень базовых операций над множествами
- Перечень базовых операций над множествами
- Области определения функций
- Обратная функция
- Теорема
- Мера и нечеткая мера
- Задача построения нечетких мер
- Нечеткие множества: определение и формы записи в операциях и
- 1.7.Функции доверия и правило Демпстера а.Р.,[23]
- 1.8. Нормировка функций в теории нечётких множеств
- 1.9. Нечёткие отношения: прямая и обратная задачи
- Глава 2. Методы представления знаний с использованием приближенных и нечетких множеств
- 2.1.Нечеткие вычислительные технологии
- 2.2.Семантика объекта: определение и типизация
- 2.3.Создание Базы знаний: постановка, семантика, прагматика
- 2.4. Сопоставление объектов: постановка, семантика, прагматика
- 2.5.Распознавание объектов: постановка, семантика, прагматика
- 2.6. Управление процессом представления знаний
- Нечёткие множества: субъективность и неточность
- 2.8.Нечеткая алгебра
- 2.9.Нечеткие иерархические отношения
- 2.10.Естественность операций max и min
- 2.11.Нечеткая статистика
- 2.12. Совместимость и нечеткое ожидание
- Глава 3. Нечеткие технологии создания информационных систем. Способы получения информации и ее реализации для оценивания состояния агрегатов
- 3.2. Обработка нечетких данных как неопределенных чисел
- Методология представления агрегата в виде комплексного механизма
- 3.2.2. Описание исходной информации на языке размытых множеств
- Размытость интервалов, ограничений, критериев и целей управления в эксплуатации и диагностике
- 3.3.3. Размытые ограничения, цели и оптимизация работы агрегата в условиях нечеткой информации о состоянии
- Анализ информации для диагностики и оценивания состояния механизмов
- 3.5. Оценки погрешностей измерений и наблюдений за состоянием агрегатов
- Влияние погрешностей исходных данных на погрешности диагноза
- Глава 4. Источники информации и причины возникновения ее неопределенности
- 4. 2. Управление и идентификация на объекте в условиях неопределенности информации на основе знаний, получаемых при функциональной диагностике
- Тогда множество диагностических признаков g также будет нечетким
- 4.3.Представление и использование чётких и «размытых» знаний в математических моделях оценивания состояния агрегатов, на основе функциональной диагностики
- 4.3.1.Формализация решения задачи оценивания состояния
- 4.3.2. Особенности решения задач контроля и функционирования агрегата
- Глава 5. Введение в генетическое программирование
- 5.1. Введение в генетические и эволюционные алгоритмы
- 5.2. Сравнительный анализ эволюционных алгоритмов
- 5.3. Генетическое программирование
- 5.4. Перспективные направления развития гп
- Глава 6. Введение в нейронные сети
- 6.1. Алгоритмы их обучение и эластичные нейро-нечеткие системы
- 6.2. Имитация нервных клеток
- 6.3. Математическая модель нейрона
- 6.4. Обучение нейронных сетей
- 6.5. Метод обратного распространения ошибки
- 6.6. Алгоритм настройки нейронной сети
- Глава 7. Другие методы нечетких технологий для построения
- 7.1. Введение в теорию возможностей и смысла
- 7.1.1. Неопределенность и неточность
- 7.1.2. Традиционные модели неточности и неопределенности
- 7.1.3. Меры неопределенности
- 7.1.4. Меры возможности и необходимости
- 7.1.5. Возможность и вероятность
- 7.2. Языки и технологии логического программирования prolog, lisp
- Глава 8. Послесловие
- 8.1. Эволюция искусственного интеллекта для развития интеллектуальных
- 8.2.Экспертные системы нового уровня
- 8.3. Роботика
- 8.4. Преобразование речи искусственного языка
- 8.5. Интеллект муравьёв и его использование
- 8.6. Искусственная жизнь, мозг, познание, разум, память и мышление
- 8.7. Боты
- Optimizator подсистемы диагностики состояния энергоустановок, skais, для решения задач технического обслуживания
- Заключение
- Заключение
- Литература