3.5. Оценки погрешностей измерений и наблюдений за состоянием агрегатов
Точность определения диагностических признаков и последующего оценивания состояния агрегатов зависит от точности измерения исходной информации и особенностей применяемых моделей диагностики (от качества измеряемых параметров и чувствительности к ним моделей). Необходимо отметить также, что уменьшение количества определяемых признаков и оптимизация решения требуемой точности их измерений могут в некоторой степени сократить затраты на процесс измерения как за счет перераспределения требуемой погрешности, так и за счет уменьшения количества измеряемых параметров. Рассмотрим влияние погрешностей измерения на результаты расчета и основанного на них диагноза. Это так называемые прямая и обратная задачи в теории погрешностей [68, 69]. Основу решения обратной задачи составляет нахождение связей между абсолютными погрешностями выходной информации и- входной информации, чтобы обеспечить заданную (лежащую в заданном интервале доверия) предельную погрешность функции (энергетической характеристики, рис. 3.10) и установить предельные абсолютные погрешностиее аргументов. Это так называемый «принцип равных влияний». Суть его заключается в том, что вклад каждого слагаемого в правой части формулы (3.41):
, (3.41)
в общую сумму принят равнозначным. Из этого условия следует равенство
, где .(3.42)
Существенным недостатком такого способа является уравнивание различных (с точки зрения физики протекающего в теплоэнергетической установке процесса) параметров погрешностей, формирующих в итоге выходной параметр (мощность, расход и т.д.). В виду этого искажается действительное, статистически проявляющееся соотношение между параметрами, включенными в(параметрический интервал- того функционала состояния энергоустановки). Таким образом, появляется нечеткая информация на интервалах нагрузки энергетической характеристики (рис.3.10). В [69] был получен вариант метода наименьших квадратов (МНК), в котором учитываются и погрешности функции и погрешности ее аргументов в приложении к энергоустановке, названный автором «методом согласования балансов». Такой способ анализа данных идентичен «способу согласования балансов», применяемому в энергетике и конфлюэнтному анализу в теории статистики, [70].
Указанный способ не приводит к появлению смещенных оценок идентифицируемых параметров и, в результате, сводится к минимизации суммы
,(3.43)
при условии
.(3.44)
Обратная задача теории погрешностей отвечает условию получения погрешностей независимых аргументов и выполнению условия
,(3.45)
при выполнении условия (3.44) и обязательном .
Как показывает выполненный анализ измерений, при диагностических экспериментах на функционирующих энергоустановках, минимизация абсолютных погрешностей не может полностью учитывать имеющееся разнообразие физических и механических параметров (по их абсолютной величине) и, что особенно нежелательно, колебание погрешностей при изменении их аргументов (особенно ощутимое в нестационарных режимах работы энергоустановок и в динамике измерения параметров). В результате это приводит к неопределенности результата измерений – апостериорного состояния системы «объект – средство измерений, процессор».
В связи с изложенным и с учетом [71], в диагностические расчеты и выполняемый анализ результатов измерений признаков вводятся весовые согласующие коэффициенты вида
.(3.46)
Весовые коэффициенты выбираются диагностом, исходя из условия пропорциональности каждого слагаемого суммы (3.44) абсолютного значения аргумента и квадрата модуля частной производной функции по этой переменной.
Задача минимизации суммы относительных погрешностей , в представленной автором постановке, решается в виде
,(3.47)
при соблюдении условия (3.44). Для решения этой задачи используется метод множителей Лагранжа Ж.-Л. и программный модуль OPTIMIZATOR (рис. 3.9) диагностического комплекса SKAIS [9], позволяющие отыскивать максимум (минимум) функции при ограничениях в форме равенств. Основная идея применяемого метода заключается в переходе от задачи на условный экстремум к задаче отыскания безусловного экстремума некоторой специально построенной функции Лагранжа Ж.-Л..
-
Содержание
- Предисловие
- Список использованных сокращений
- Часть 1.
- Глава 1. Математические основы формализации и методов описания
- Часть 2.
- Глава 2. Методы представления знаний с использованием
- Часть 3.
- Глава 3. Интеллектуальные технологии создания информационных систем. Способы получения информации и ее реализации для оценивания состояния агрегатов
- Часть 4.
- Глава 4. Источники информации и причины возникновения ее неопределенности
- 4.1. Переработка и использование информации в реальных условиях функционирования агрегатов
- Часть 5.
- Список использованных сокращений и обозначений
- Введение:
- Часть 1.
- Глава 1. Математические основы формализации и методов описания
- Формализация объекта и парадигмы
- 1.3. Множества и перечень базовых операций над множествами
- Перечень базовых операций над множествами
- Области определения функций
- Обратная функция
- Теорема
- Мера и нечеткая мера
- Задача построения нечетких мер
- Нечеткие множества: определение и формы записи в операциях и
- 1.7.Функции доверия и правило Демпстера а.Р.,[23]
- 1.8. Нормировка функций в теории нечётких множеств
- 1.9. Нечёткие отношения: прямая и обратная задачи
- Глава 2. Методы представления знаний с использованием приближенных и нечетких множеств
- 2.1.Нечеткие вычислительные технологии
- 2.2.Семантика объекта: определение и типизация
- 2.3.Создание Базы знаний: постановка, семантика, прагматика
- 2.4. Сопоставление объектов: постановка, семантика, прагматика
- 2.5.Распознавание объектов: постановка, семантика, прагматика
- 2.6. Управление процессом представления знаний
- Нечёткие множества: субъективность и неточность
- 2.8.Нечеткая алгебра
- 2.9.Нечеткие иерархические отношения
- 2.10.Естественность операций max и min
- 2.11.Нечеткая статистика
- 2.12. Совместимость и нечеткое ожидание
- Глава 3. Нечеткие технологии создания информационных систем. Способы получения информации и ее реализации для оценивания состояния агрегатов
- 3.2. Обработка нечетких данных как неопределенных чисел
- Методология представления агрегата в виде комплексного механизма
- 3.2.2. Описание исходной информации на языке размытых множеств
- Размытость интервалов, ограничений, критериев и целей управления в эксплуатации и диагностике
- 3.3.3. Размытые ограничения, цели и оптимизация работы агрегата в условиях нечеткой информации о состоянии
- Анализ информации для диагностики и оценивания состояния механизмов
- 3.5. Оценки погрешностей измерений и наблюдений за состоянием агрегатов
- Влияние погрешностей исходных данных на погрешности диагноза
- Глава 4. Источники информации и причины возникновения ее неопределенности
- 4. 2. Управление и идентификация на объекте в условиях неопределенности информации на основе знаний, получаемых при функциональной диагностике
- Тогда множество диагностических признаков g также будет нечетким
- 4.3.Представление и использование чётких и «размытых» знаний в математических моделях оценивания состояния агрегатов, на основе функциональной диагностики
- 4.3.1.Формализация решения задачи оценивания состояния
- 4.3.2. Особенности решения задач контроля и функционирования агрегата
- Глава 5. Введение в генетическое программирование
- 5.1. Введение в генетические и эволюционные алгоритмы
- 5.2. Сравнительный анализ эволюционных алгоритмов
- 5.3. Генетическое программирование
- 5.4. Перспективные направления развития гп
- Глава 6. Введение в нейронные сети
- 6.1. Алгоритмы их обучение и эластичные нейро-нечеткие системы
- 6.2. Имитация нервных клеток
- 6.3. Математическая модель нейрона
- 6.4. Обучение нейронных сетей
- 6.5. Метод обратного распространения ошибки
- 6.6. Алгоритм настройки нейронной сети
- Глава 7. Другие методы нечетких технологий для построения
- 7.1. Введение в теорию возможностей и смысла
- 7.1.1. Неопределенность и неточность
- 7.1.2. Традиционные модели неточности и неопределенности
- 7.1.3. Меры неопределенности
- 7.1.4. Меры возможности и необходимости
- 7.1.5. Возможность и вероятность
- 7.2. Языки и технологии логического программирования prolog, lisp
- Глава 8. Послесловие
- 8.1. Эволюция искусственного интеллекта для развития интеллектуальных
- 8.2.Экспертные системы нового уровня
- 8.3. Роботика
- 8.4. Преобразование речи искусственного языка
- 8.5. Интеллект муравьёв и его использование
- 8.6. Искусственная жизнь, мозг, познание, разум, память и мышление
- 8.7. Боты
- Optimizator подсистемы диагностики состояния энергоустановок, skais, для решения задач технического обслуживания
- Заключение
- Заключение
- Литература