1.2. Основные понятия медицинской информатики
Определение кибернетики как науки, получившее наибольшее распространение в России, принадлежит А. И. Бергу.
Медицинская кибернетика — это наука об управлении в сложных динамических медицинских системах. Систему в свою очередь можно охарактеризовать как совокупность взаимозависимых и взаимообусловленных элементов, обладающую свойствами, не присущими каждому элементу в отдельности.
Методология познания и практики, в основе которой лежит исследование объектов как систем, носит название «системный подход». Этот подход способствует адекватной постановке проблем и выработке эффективной стратегии их изучения. Специфика системного подхода состоит в том, что он ориентирует исследование на раскрытие целостности объекта, выявление типов связей внутри него и сведение их в единое целое.
Элементы, не входящие в систему, называются окружением этой системы.
Выбор системы — выделение некой совокупности элементов материального мира, связанной с интересами исследования, — зависит от произвольного акта мыслительной деятельности. Одновременно происходит определение элементов системы (в качестве системы можно рассматривать клетку, а можно — физиологическую систему организма, например сердечно-сосудистую систему и т.д.). Весь материальный мир можно описать взаимодействиями между объектами природы, которые объединяют в некие совокупности и называют системами.
Совокупность структуры и функций системы называют организацией системы. Структура — это пространственное отношение элементов между собой, а функции — энергетические связи между элементами, в результате которых получается та выходная функция, которой обладает система.
После того как исследователь выбрал систему, он должен определить параметры, которые измеряются при оценке ее состояния. Многое зависит от цели исследования объекта. Например, кардиолог, исследуя пациента, использует данные ЭКГ, значения давления (артериального, венозного), потоков — ударного и сердечного индексов, сопротивления — большого и малого кругов кровообращения; пульмонолог — значения дыхательного и минутного объемов, неравномерности вентиляционно-перфузионных отношений и т.д.
Таким образом, состояние моделируемой системы зависит от состояния ее параметров, которые в свою очередь определяются выбором исследователя. Состояние системы на данный момент времени определяется количественными значениями набора существенных переменных.
Значения переменных могут меняться во времени. Изменение количественного значения хотя бы одной переменной называется событием. Действие — это событие, которое генерирует сама система. Поведение системы — это цепь действий, направленных на изменение состояния системы.
Понятие «информация» (от лат. informatio — разъяснение, изложение) определяют с двух разных точек зрения: философской и прикладной.
Н. Винер определил понятие информации с помощью отрицания, считая, что это и не материя, и не энергия. В.Н.Глушков первым высказал мнение, что информация присуща всей материи (вся материя обладает информацией). Общепризнано, что материя обладает массой (всякая частица, включая фотон) и энергией (энергия — мера движения материи).
По современным философским представлениям информация — это мера распределенности массы и энергии в пространстве и времени. Она объективна и не зависит от сознания. Это один из обязательных атрибутов материи.
В прикладном значении понятие «информация» упоминается чаще.
Данные — это полученные в результате наблюдения (исследования) числа или обнаруженные явления, обозначаемые символами или словами, которые фиксируются, передаются с помощью средств связи, могут обрабатываться с использованием вычислительной техники.
Данные, накапливаемые индивидуумом как результат опыта и зафиксированные в той или иной форме, представляют собой знания.
Информация — это первичные и(или) переработанные данные. В толковом словаре С.И.Ожегова и Н.Ю.Шведовой (1999) дается следующее определение: «Информация — это: 1) сведения об окружающем мире и протекающих в нем процессах; 2) сообщения, осведомляющие о положении дел, о состоянии чего-либо». Определений понятия «информация» множество.
Важнейшими свойствами информации являются объективность, полнота и доступность.
Информацию подразделяют по форме представления (текстовая, числовая, графическая, звуковая), способам восприятия (визуальная, тактильная, обонятельная, вкусовая) и т.д.
Информационный процесс — это перенос и восприятие данных от исследуемого (передающего) объекта к воспринимающему. Элементами информационного процесса являются: источник энергии, канал связи (среда, по которой передается сигнал), исследуемая система, воспринимающая система, кодовая система. Информационные процессы имеют место во всех профилях клинической медицины и здравоохранения. Более того, от их реализации напрямую зависит качество оказываемой медицинской помощи и эффективность управления отраслью.
Медицинская информация в широком смысле этого словосочетания — это любая информация, относящаяся к медицине, а в узком (персонифицированном) смысле — информация, относящаяся к состоянию здоровья конкретного человека.
Г. И. Назаренко с соавт. (2005) разделили виды медицинской информации на четыре группы:
1) алфавитно-цифровая — большая часть содержательной медицинской информации (все печатные и рукописные документы);
2) визуальная (статическая и динамическая) — статическая — изображения (рентгенограммы и др.), динамическая — динамические изображения (реакция зрачка на свет, мимика пациента и др.);
3) звуковая — речь пациента, флоуметрические сигналы, звуки при допплеровском исследовании и т.д.;
4) комбинированная — любые комбинации описанных групп.
Необходимо отметить, что врач почти всегда имеет дело именно с комбинированными видами информации о пациенте.
Медицинская информация должна постоянно обновляться и нуждается в интерпретирующей среде.
Медицинская персонифицированная информация должна быть конфиденциальной. Наиболее высокий уровень, на котором такая информация может быть доступна (только тем, кому она необходима при непосредственном взаимодействии с пациентом), — это уровень ЛПУ (поликлиники (консультации), стационара, диспансера, специализированного центра). При движении информационных потоков «наверх» — на муниципальный, территориальный и федеральный уровни — должны быть обеспечены деперсонализация и последующее интегрирование информации с ее преобразованием в формы статистических параметров, обеспечивающих возможность судить о результатах деятельности врача, отделения, ЛПУ, муниципального образования, как в медицинском, так и в экономическом аспектах. Самая высокая степень интеграции информации — на федеральном уровне. Не обходима и возможность обратной связи — запроса и получения соответствующей регламентированной информации с предыдущего уровня.
Информация почти всегда является ответом на вопрос. Наиболее простые вопросы те, на которые можно дать только два равновероятных ответа («да», «нет»). В кибернетике и информатике за единицу информации принято считать такое количество информации, при котором из двух равновероятных возможностей можно выбрать одну. Такая единица информации называется бит.
Количество информации, которое необходимо для получения ответа при выборе из нескольких возможностей, равно логарифму по основанию 2 от числа возможностей. Один бит информации равен Log2 = 1. Используются и более крупные единицы информации: 1 байт = 8 бит, 1 килобайт = 1 024 байт, 1 мегабайт = 1 024 килобайта и т.д.
В кибернетике принято кодировать информацию с помощью двоичной системы счисления. Двоичный принцип кодирования удобен тем, что позволяет на основе простых технических элементов воспроизводить как количественные, так и логические зависимости.
В двоичной системе счисления за основание принято число 2, т.е. используется всего два знака: 0 и 1 («нет» и «да»), с помощью которых можно представить любую информацию.
Информация в любых системах передается по каналам связи. Они должны обеспечивать воспроизведение сигнала, так как искажение его структуры приводит к искажению информации. Обычно искажение сигнала в канале связи происходит под влиянием различных помех, которые называют шумом. Причины появления шума могут быть разными.
Например, при разговоре каналом связи является воздух. Любой студент знает, что в тихой аудитории можно без напряжения слышать и понимать негромкую речь лектора. Если же кроме лектора в аудитории разговаривают и студенты, создавая шум, то речь лектора смешивается с шумом и воспринимать материал становится сложнее или вообще невозможно.
На «чисто» записанной ЭКГ легко можно выделить и обсчитать все зубцы и интервалы. На ЭКГ при среднем уровне шума (например, при сетевой помехе) анализ зубцов Р и Т невозможен. При высоком уровне шума анализ ЭКГ невозможен вообще.
- Введение
- Медицинская инфоматика как наука
- 1.1. Исторический обзор
- 1.2. Основные понятия медицинской информатики
- 1.3. Место медицинской информатики в здравоохранении
- Глава 2 стандартные прикладные программные средства в решении задач медицинской информатики
- 2.1. Применение текстового редактора в медицинских задачах
- 2.2. Применение электронных таблиц при работе с медицинскими данными
- 2.3. Возможности систем управления базами данных при построении информационных систем
- Глава 3 компьютерный анализ медицинских данных с использованием методов математической статистики
- 3.1. Программные средства математической статистики
- 3.2. Особенности медицинских данных
- 3.3. Подготовка, предварительный анализ информации и выбор методов обработки данных
- 3.4. Использование методов математической статистики для анализа данных
- 3.5. Интерпретация и представление полученных результатов
- Глава 4 телекоммуникационные технологии и интернет-ресурсы для медицины и здравоохранения
- 4.1. Понятие телемедицины
- 4.2. Этапы становления российской телемедицины
- 4.3. Телеконсультирование, теленаблюдение и телепомощь
- 4.4. Дистанционное обучение
- 4.5. Медицинские ресурсы сети интернет
- Глава 5 информационные медицинские системы
- 5.1. Классификация информационных медицинских систем
- 5.2. Общие требования к информационным медицинским системам
- 5.3. Значение стандартов в создании и обеспечении взаимодействия информационных медицинских систем
- 5.4. Организационное и правовое обеспечение функционирования информационных медицинских систем
- Глава 6 информационная модель лечебно-диагностического процесса
- 6.1. Основные составляющие лечебно-диагностического или оздоровительно-профилактического процесса
- 6.2. Процесс деятельности медицинского работника как объект информатизации
- 6.3. Моделирование и использование моделей в медицине
- Глава 7 поддержка лечебно-диагностического процесса методами кибернетики и информатики
- 7.1. Медико-технологические системы и их особенности
- 7.2. Автоматизированные системы для обработки медицинских сигналов и изображений
- 7.3. Автоматизированные системы для консультативной помощи в принятии решений
- 7.3.1. Автоматизированные системы для распознавания патологических состояний методами вычислительной диагностики
- 7.3.2. Автоматизированные консультативные системы для помощи в принятии решений на основе интеллектуального (экспертного) подхода
- База знаний
- 7.3.3. Автоматизированные гибридные системы для консультативной помощи в принятии решений
- 7.4. Автоматизированные системы для управления жизненно важными функциями организма
- Глава 8 автоматизированное рабочее место медицинского работника
- 8.1. Основные функции автоматизированного рабочего места медицинского работника
- 8.2. Классификации автоматизированных рабочих мест в здравоохранении
- 8.3. Особенности интеллектуальных автоматизированных рабочих мест
- 8.4. Специализированные рабочие места
- 8.5. Автоматизированные рабочие места и современные информационно-компьютерные технологии
- Глава 9 информационно-технологические системы
- 9.1. Построение и основные функции информационно-технологических систем
- 9.2. Поддержка процесса обследования и лечения в информационно-технологических системах
- 9.3. Информационно-технологические системы диспансерного наблюдения
- 9.4. Электронная история болезни
- 9.5. Информационно-технологические системы отделений лечебных учреждений
- 9.6. Регистры (специализированные информационно-технологические системы)
- 9.7. Права доступа к информации и конфиденциальность медицинских данных
- Глава 10 автоматизированные информационные системы лпу
- 10.1. Концепции разработки информационных систем лечебных учреждений
- 10.2. Функциональное назначение учрежденческих систем
- 10.3. Общие принципы построения автоматизированных информационных систем лпу
- 10.4. Уровни автоматизации современных лечебно-профилактических учреждений
- 10.5. Технологические решения
- Глава 11 информационные системы территориального уровня
- 11.1. Структура и функции медицинских информационных систем территориального уровня
- 11.2. Информационно-аналитические и геоинформационные системы в поддержке принятия управленческих решений
- 11.2.1. Информационно-аналитические системы
- 11.2.2. Географические информационные системы
- Глава 12 системы федерального уровня и мониторинга здоровья населения
- 12.1. Цели и задачи информационных медицинских систем федерального уровня
- 12.2. Принципы и место компьютерного мониторинга здоровья населения в общей системе здравоохранения
- 12.3. Федеральные системы мониторинга состояния здоровья
- Федеральная база данных
- Федеральная база данных
- 12.4. Интеграция информационных систем различных служб и уровней оказания медико-социальной помощи
- Федеральная имс
- Глава 13 перспективы перехода к электронному здравоохранению
- 13.1. Понятие электронного здравоохранения
- 13.2. Принципы построения единого информационного пространства
- 13.3. Подходы и первый опыт электронного здравоохранения
- 13.4. Возможности электронного здравоохранения
- Заключение: медицинская информатика в системе оказания помощи населению
- Оглавление