9.10. Нахождение экстремальных значений на поверхности отклика
Запишем уравнение поверхности отклика в следующем виде
где x1,...,xk – независимые переменные,k – число факторов. Во многих случаях цель имитационного моделирования заключается в поиске таких величин или уровней независимых переменных, при которых отклик достигает экстремального значения. Для определения направления движения к экстремальной точке в случае использования количественных, непрерывных и измеряемых величин применяют ряд небольших, полных и неполных факторных экспериментов. Так как поверхность отклика неизвестна, то ее аппроксимируют какой-то гладкой функцией, в качестве которой обычно используют полином первого порядка
или второго порядка
Параметры a0,a1,...,ak,... оценивают по результатам факторного эксперимента.
Для поиска экстремума наиболее часто используют метод скорейшего подъема. Он основан на линейной аппроксимации поверхности отклика в окрестности рассматриваемой точки P cпомощью факторного эксперимента.
По построенной линейной функции определяется направление скорейшего подъема к точке оптимума (рис. 9.8). В направлении делается небольшой шаг, после чего описанная процедура повторяется снова. Метод не позволяет определить длину шага, однако, указывает направление движения.
Предположим, что исследователь провел в точке P экспериментc2kкомбинациями плюс два наблюдения в центре. Эксперимент позволяет определить коэффициентыа0,а1, а2 (для случаяk = 2 ), которые определяют наклон плоскости аппроксимации. Направление скорейшего подъема показывает относительные величины изменения факторов, обеспечивающих максимальное увеличение отклика. Поднявшись по этому направлению до некоторой точкиP1, необходимо повторить всю процедуру. Такой итерационный процесс позволяет достигать все лучших и лучших значений отклика. Однако вблизи точки экстремума эта процедура неэффективна, так как коэффициенты а1и а2, определяющие наклон аппроксимирующей плоскости, становятся небольшими и точность их оценивания низка. Это означает, что вблизи экстремальной точки линейная аппроксимация поверхности отклика является недостаточной и надо переходить к аппроксимации полиномом более высокой степени.
Рис. 9.8
Для рассматриваемого примера эксперимент c2kкомбинациями достаточен для оценивания коэффициентовa0,a1,a2. Однако два добавочных наблюдения в геометрическом центреP позволяют не только уточнить уравнение регрессии, но и получить несколько дополнительных степеней свободы для проверки статистической значимости оценок параметров регрессии.Toже самое можно сделатьcпомощью повторного эксперимента. Вблизи экстремума поверхности желательно аппроксимировать поверхности отклика, по меньшей мере, полиномом второго порядка. Для этого используют приближение:
у = a0 + a1xl +a2x2 + a11x12 + a22x22 + a12x1x2
Для оценки коэффициентов регрессии этой модели необходимо измерить каждый фактор, по крайней мере, на трех уровнях, то есть использовать 3k-факторный эксперимент. Однако этот эксперимент дает довольно низкую точность оценок коэффициентов регрессии. Поэтому специально для квадратичных полиномов используют другие способы построения эксперимента. Из них наиболее полезными являютсяцентральный композиционный или рототабельный планы. Они получаются путем добавления дополнительных точек к данным, полученным из 2kфакторных экспериментов. Для рототабель-ного построения стандартная ошибка одинакова для равноудаленных от центра области точек. Такие построения разработаны для любого числа факторов и представляют собой правильные геометрические фигурыcцентральными точками.
- Предисловие
- Введение
- Глава 1. Модели массового обслуживания
- 1.1. Системы массового обслуживания и их характеристики
- 1.2. Системыcодним устройством обслуживания
- 1.3. Основы дискретно-событийного моделированияCmo
- 1.4. Многоканальные системы массового обслуживания
- Переменная vаr1, экспоненциальное распределение
- Глава 2. Вероятностные сети систем массового обслуживания
- 2.1. Общие сведения о сетях
- 2.2. Операционный анализ вероятностных сетей
- 2.3. Операционные зависимости
- 2.4. Анализ узких мест в сети
- Глава 3. Вероятностное моделирование
- 3.1. Метод статистических испытаний
- 3.2. Моделирование дискретных случайных величин
- 3.3. Моделирование непрерывных случайных величин
- 3.4. Сбор статистических данных для получения оценок характеристик случайных величин
- 3.5. Определение количества реализаций при моделировании случайных величин
- Глава 4. Система моделированияgpss
- 4.1. Объекты
- 4.2. Часы модельного времени
- 4.3. Типы операторов
- 4.4. Внесение транзактов в модель. БлокGenerate
- 4.5. Удаление транзактов из модели. БлокTerminate
- 4.6. Элементы, отображающие одноканальные обслуживающие устройства
- 4.7. Реализация задержки во времени. БлокAdvance
- 4.8. Сбор статистики об ожидании. БлокиQueue,depart
- 4.9. Переход транзакта в блок, отличный от последующего. БлокTransfer
- 4.10. Моделирование многоканальных устройств
- 4.11. Примеры построенияGpss-моделей
- 4.12. Переменные
- 4.13. Определение функции вGpss
- 4.14. Стандартные числовые атрибуты, параметры транзактов. Блоки assign, mark, loop
- Примеры фрагментов gpss-моделейcиспользованием сча и параметров гранзактов
- 4.15. Изменение приоритета транзактов. БлокPriority
- 4.16. Организация обслуживанияcпрерыванием. Блоки preempt и return
- 4.17. Сохраняемые величины
- 4.18. Проверка числовых выражений. БлокTest
- 4.19. Определение и использование таблиц
- 4.20. Косвенная адресация
- 4.21. Обработка транзактов, принадлежащих одному семейству
- 4.22. Управление процессом моделирования в системеGpss
- 4.23. Списки пользователей
- 4.24. Блоки управления потоками транзактовLogic,gatelr,gatelSиGate
- 4.25. Организация вывода временных рядов изGpss-модели
- 4.26. Краткая характеристика языкаPlus
- 4.27. КомандыGpssWorId
- 4.28. Диалоговые возможностиGpssWorld
- 4.29. Отличия междуGpssWorldиGpss/pc
- Глава 5. Моделирование вычислительных и операционных систем
- 5.1. Операционные системы компьютеров
- 5.2. Сети и системы передачи данных
- 5.3. Проблемы моделирования компьютеров и сетей
- Глава 6. Основы моделирования процессов
- 6.1. Производственные процессы
- 6.2. Распределительные процессы
- 6.3. Процессы обслуживания клиентов
- 6.4. Процессы управления разработками проектов
- Глава 7. Задания для самостоятельной работы Задание 1. Моделирование разливной линии
- Задание 2 [10]. Моделирование контроля и настройки телевизоров
- Задание 3. Моделирование работы кафе
- Задание 4. Моделирование работы обрабатывающего цеха
- Задание 5. Моделирование работы обрабатывающего цеха
- Задание 6. Моделирование работы обрабатывающего цеха
- Задание 7. Моделирование работыCmo
- Задание 8. Моделирование функций
- Задание 9 [10]. Моделирование системы обслуживания
- Задание 10 [16]. Моделирование системы автоматизации проектирования
- Задание 11 [16]. Моделирование работы транспортного цеха
- Задание 12 [16]. Моделирование системы передачи разговора
- Задание 13 [16]. Моделирование системы передачи данных
- Задание 14 [16]. Моделирование узла коммутации сообщений
- Задание 15 [16]. Моделирование процесса сборки
- Задание 16 [16]. Моделирование работы цеха
- Задание 17 [16]. Моделирование системы управления производством
- Задание 18. Моделирование производственного процесса
- Задание 19. Моделирование работы заправочной станции
- Задание 20. Моделированиеработы станции технического обслуживания
- Задание 21. Моделирование работы станции скорой помощи
- Задание 22. Моделирование работы госпиталя
- Задание 23. Моделирование работы маршрутных такси
- Задание 24. Моделирование работы печатной системы
- Задание 25. Моделирование процесса сборки пк
- Глава8. Проектирование имитационных моделей c помощью интерактивной системы имитационного моделирования
- 8.1. Структура интерактивной системы имитационного моделирования
- 8.2. Построение концептуальной схемы модели
- 8.3. Параметрическая настройка модели
- 8.4. Генератор формул
- 8.5. Управление экспериментом
- 8.6. Запуск эксперимента и обработка результатов моделирования
- 8.7. Управление проектами и общей настройкой системы
- 8.8. Пример построения модели средствамиIss2000
- Глава 9. Технология имитационного моделирования
- 9.1. Имитационные проекты
- 9.2. Организация экспериментов
- 9.3. Проблемы организации имитационных экспериментов
- 9.4. Оценка точности результатов моделирования
- 9.5. Факторный план
- 9.6. Дисперсионный анализAnovAв планировании экспериментов
- 9.7. Библиотечная процедураAnova
- 9.8. Технология проведение дисперсионного анализа в системеGpssWorld
- 9.9. Особенности планирования экспериментов
- 9.10. Нахождение экстремальных значений на поверхности отклика
- 9.11. Организация экспериментов вGpssWorId
- 9.L2. Выбор наилучшего варианта структуры системы
- Глава 10. Примеры принятия решенийcпомощью имитационного моделирования
- 10.1. Моделирование производственного участка
- 10.2. Моделирование технологического процесса ремонта и замены оборудования
- Приложение Системные сча
- Сча транзактов
- Сча блоков:
- Сча одноканальных устройств:
- Сча очередей
- Сча таблиц
- Сча ячеек и матриц ячеек сохраняемых величин:
- Сча вычислительных объектов
- Список литературы
- Срдержание
- Глава 5. Моделирование вычислительных и операционных систем 132
- Глава 10. Примеры принятия решений c помощью имитационного моделирования 201