logo
Обработка данных / Томашевский_Имитационное моделирование в среде GPSS_2003

9.10. Нахождение экстремальных значений на поверхности отклика

Запишем уравнение поверхности отклика в следующем виде

где x1,...,xkнезависимые переменные,kчисло факторов. Во мно­гих случаях цель имитационного моделирования заключается в поис­ке таких величин или уровней независимых переменных, при которых отклик достигает экстремального значения. Для определения на­правления движения к экстремальной точке в случае использования количественных, непрерывных и измеряемых величин применяют ряд небольших, полных и неполных факторных экспериментов. Так как поверхность отклика неизвестна, то ее аппроксимируют какой-то гладкой функцией, в качестве которой обычно используют полином первого порядка

или второго порядка

Параметры a0,a1,...,ak,... оценивают по результатам факторного эксперимента.

Для поиска экстремума наиболее часто используют метод ско­рейшего подъема. Он основан на линейной аппроксимации поверхно­сти отклика в окрестности рассматриваемой точки P cпомощью фак­торного эксперимента.

По построенной линейной функции определяется направление скорейшего подъема к точке оптимума (рис. 9.8). В направлении делается небольшой шаг, после чего описанная процедура повторяет­ся снова. Метод не позволяет определить длину шага, однако, указы­вает направление движения.

Предположим, что исследователь провел в точке P экспериментc2kкомбинациями плюс два наблюдения в центре. Эксперимент по­зволяет определить коэффициентыа0,а1, а2 (для случаяk = 2 ), кото­рые определяют наклон плоскости аппроксимации. Направление ско­рейшего подъема показывает относительные величины изменения факторов, обеспечивающих максимальное увеличение отклика. Под­нявшись по этому направлению до некоторой точкиP1, необходимо повторить всю процедуру. Такой итерационный процесс позволяет достигать все лучших и лучших значений отклика. Однако вблизи точки экстремума эта процедура неэффективна, так как коэффициен­ты а1и а2, определяющие наклон аппроксимирующей плоскости, становятся небольшими и точность их оценивания низка. Это означа­ет, что вблизи экстремальной точки линейная аппроксимация по­верхности отклика является недостаточной и надо переходить к ап­проксимации полиномом более высокой степени.

Рис. 9.8

Для рассматриваемого примера эксперимент c2kкомбинациями достаточен для оценивания коэффициентовa0,a1,a2. Однако два до­бавочных наблюдения в геометрическом центреP позволяют не только уточнить уравнение регрессии, но и получить несколько до­полнительных степеней свободы для проверки статистической зна­чимости оценок параметров регрессии.Toже самое можно сделатьcпомощью повторного эксперимента. Вблизи экстремума поверхности желательно аппроксимировать поверхности отклика, по меньшей ме­ре, полиномом второго порядка. Для этого используют приближение:

у = a0 + a1xl +a2x2 + a11x12 + a22x22 + a12x1x2

Для оценки коэффициентов регрессии этой модели необходимо измерить каждый фактор, по крайней мере, на трех уровнях, то есть использовать 3k-факторный эксперимент. Однако этот эксперимент дает довольно низкую точность оценок коэффициентов регрессии. Поэтому специально для квадратичных полиномов используют дру­гие способы построения эксперимента. Из них наиболее полезными являютсяцентральный композиционный или рототабельный пла­ны. Они получаются путем добавления дополнительных точек к дан­ным, полученным из 2kфакторных экспериментов. Для рототабель-ного построения стандартная ошибка одинакова для равноудаленных от центра области точек. Такие построения разработаны для любого числа факторов и представляют собой правильные геометрические фигурыcцентральными точками.