4.8. Сбор статистики об ожидании. БлокиQueue,depart
Эти блоки обеспечивают в GPSSвозможность автоматического сбора статистических данных, описывающих вынужденное ожидание, которое может происходить время от времени в различных точках модели.
Система моделирования GPSSобеспечивает возможность сбора статистикиcпомощью такого средства, какрегистратор очереди.
При использовании регистратора очереди в тех точках модели, где число ресурсов ограничено, интерпретатор автоматически начинает собирать различную информацию об ожидании cпомощью СЧА, А именно:
1) число входов транзактов в очередь;
2) количество транзактов, которые фактически присоединились к очереди и сразу ее покинули, т.е. имели время ожидания равное нулю;
3) максимальная длина очереди;
4) среднее число ожидавших транзактов;
5) среднее время ожидания тех транзактов, которым пришлось ждать.
В модели может быть несколько регистраторов очередей, различающихся именами. Правила присвоения имен те же, что и для устройств. Разработчик вносит регистратор очереди в модель cпомощью пары взаимодополняющих блоков:
Таблица 4.7
Операнд
| Значение | Результат по умолчанию |
А | Имя очереди, в которую необходимо стать транзакту или которую надо покинуть (числовое или символическое имя, CЧА)_ | Ошибка |
В | Число единиц, на которое увеличивается (уменьшается) длина очереди (число, СЧА) | 1 |
При входе транзакта в блок QUEUE (СТАТЬ В ОЧЕРЕДЬ) выполняются четыре действия:
1 ) счетчик входов для данной очереди увеличивается наВ;
2) длина очереди (счетчик текущего содержимого) для данной очереди увеличивается наВ;
3) значение текущей длины очереди хранится в стандартном числовом атрибутеQ$<имя очереди>;
4) транзакт присоединяется к очереди cзапоминаем ее имени и значения текущего модельного времени.
Транзакт перестает быть элементом очереди только после того, как он переходит в блок DEPART (ПОКИНУТЬОЧЕРЕДЬ) соответствующей очереди. Когда это происходит, интерпретатор выполняет такие операции:
1) длина очереди соответствующей очереди уменьшается наВ;
2) используя привязку к значению времени, определяет: является ли время, проведенное транзактом в очереди, нулевым; если да, то такой транзакт по определению является транзактом cнулевым пребыванием в очереди и одновременно изменяетсясчетчик нулевых вхождении,
3) ликвидируется «привязка» транзакта к очереди.
Если в модели используются объекты типа «очередь», то в файле стандартной статистики будет представлена информация об этих объектах. В конце моделирования интерпретатор автоматически выдает статистические данные: значение счетчика входов, максимальное значение длины очереди, среднее значение длины очереди, текущее значение длины очереди в конце периода моделирования, среднее значение времени нахождения в очереди и т.д.
Статистическая информация об ожидании выдается в следующем виде:
Пример 4.4
Пусть необходимо собрать статистику об ожидании в очереди при обслуживании устройством PRIB, тогда в сегмент модели будут введены блокиQUEUE и DEPART:
В этом примере все транзакты, попадающие в устройство, должны пройти через пару QUEUE – DEPART даже тогда, когда устройство свободно и его можно сразу же занять.
Пример 4.5
Увеличение на единицудлины Q$QPR1 очередиQPR1:
QUEUE QPR1
Увеличение на две единицы длины Q$QPR2 очередиQPR2:
QUEUE QPR2,2
Уменьшение на единицу длины QSQWORKER очередиQWORKER:
DEPART QWORKER
1. Когда транзакт входит в блок QUEUE, то ищется очередьcименем, определенным операндомА. При необходимости очередь создается.
2. Блок QUEUEне поддерживает список членов очереди, он только добавляет единицы к длине очереди.
3. Использование регистратора очереди необязательно. Ceгoпомощью интерпретатор собирает лишь статистику об ожидании. Если же регистратор не используется, то статистика не собирается, но везде, где должна возникать очередь, она возникает. Ожидание является следствием состояния устройства, А не следствием использования регистратора. Если в планы не входит обработка статистических данных об очередях, то лучше не собирать статистику – это сэкономит время, расходуемое на моделирование.
4. Один и тот же транзакт может одновременно увеличить длину нескольких очередей.
5. При выходе транзакта из очереди через блок DEPART транзакту не обязательно уменьшать длину очереди на ту же величину, на которую он увеличил ее при входе в блокQUEUE. Но в итоге число входов в очередь должно равняться числу выходов из нее.
- Предисловие
- Введение
- Глава 1. Модели массового обслуживания
- 1.1. Системы массового обслуживания и их характеристики
- 1.2. Системыcодним устройством обслуживания
- 1.3. Основы дискретно-событийного моделированияCmo
- 1.4. Многоканальные системы массового обслуживания
- Переменная vаr1, экспоненциальное распределение
- Глава 2. Вероятностные сети систем массового обслуживания
- 2.1. Общие сведения о сетях
- 2.2. Операционный анализ вероятностных сетей
- 2.3. Операционные зависимости
- 2.4. Анализ узких мест в сети
- Глава 3. Вероятностное моделирование
- 3.1. Метод статистических испытаний
- 3.2. Моделирование дискретных случайных величин
- 3.3. Моделирование непрерывных случайных величин
- 3.4. Сбор статистических данных для получения оценок характеристик случайных величин
- 3.5. Определение количества реализаций при моделировании случайных величин
- Глава 4. Система моделированияgpss
- 4.1. Объекты
- 4.2. Часы модельного времени
- 4.3. Типы операторов
- 4.4. Внесение транзактов в модель. БлокGenerate
- 4.5. Удаление транзактов из модели. БлокTerminate
- 4.6. Элементы, отображающие одноканальные обслуживающие устройства
- 4.7. Реализация задержки во времени. БлокAdvance
- 4.8. Сбор статистики об ожидании. БлокиQueue,depart
- 4.9. Переход транзакта в блок, отличный от последующего. БлокTransfer
- 4.10. Моделирование многоканальных устройств
- 4.11. Примеры построенияGpss-моделей
- 4.12. Переменные
- 4.13. Определение функции вGpss
- 4.14. Стандартные числовые атрибуты, параметры транзактов. Блоки assign, mark, loop
- Примеры фрагментов gpss-моделейcиспользованием сча и параметров гранзактов
- 4.15. Изменение приоритета транзактов. БлокPriority
- 4.16. Организация обслуживанияcпрерыванием. Блоки preempt и return
- 4.17. Сохраняемые величины
- 4.18. Проверка числовых выражений. БлокTest
- 4.19. Определение и использование таблиц
- 4.20. Косвенная адресация
- 4.21. Обработка транзактов, принадлежащих одному семейству
- 4.22. Управление процессом моделирования в системеGpss
- 4.23. Списки пользователей
- 4.24. Блоки управления потоками транзактовLogic,gatelr,gatelSиGate
- 4.25. Организация вывода временных рядов изGpss-модели
- 4.26. Краткая характеристика языкаPlus
- 4.27. КомандыGpssWorId
- 4.28. Диалоговые возможностиGpssWorld
- 4.29. Отличия междуGpssWorldиGpss/pc
- Глава 5. Моделирование вычислительных и операционных систем
- 5.1. Операционные системы компьютеров
- 5.2. Сети и системы передачи данных
- 5.3. Проблемы моделирования компьютеров и сетей
- Глава 6. Основы моделирования процессов
- 6.1. Производственные процессы
- 6.2. Распределительные процессы
- 6.3. Процессы обслуживания клиентов
- 6.4. Процессы управления разработками проектов
- Глава 7. Задания для самостоятельной работы Задание 1. Моделирование разливной линии
- Задание 2 [10]. Моделирование контроля и настройки телевизоров
- Задание 3. Моделирование работы кафе
- Задание 4. Моделирование работы обрабатывающего цеха
- Задание 5. Моделирование работы обрабатывающего цеха
- Задание 6. Моделирование работы обрабатывающего цеха
- Задание 7. Моделирование работыCmo
- Задание 8. Моделирование функций
- Задание 9 [10]. Моделирование системы обслуживания
- Задание 10 [16]. Моделирование системы автоматизации проектирования
- Задание 11 [16]. Моделирование работы транспортного цеха
- Задание 12 [16]. Моделирование системы передачи разговора
- Задание 13 [16]. Моделирование системы передачи данных
- Задание 14 [16]. Моделирование узла коммутации сообщений
- Задание 15 [16]. Моделирование процесса сборки
- Задание 16 [16]. Моделирование работы цеха
- Задание 17 [16]. Моделирование системы управления производством
- Задание 18. Моделирование производственного процесса
- Задание 19. Моделирование работы заправочной станции
- Задание 20. Моделированиеработы станции технического обслуживания
- Задание 21. Моделирование работы станции скорой помощи
- Задание 22. Моделирование работы госпиталя
- Задание 23. Моделирование работы маршрутных такси
- Задание 24. Моделирование работы печатной системы
- Задание 25. Моделирование процесса сборки пк
- Глава8. Проектирование имитационных моделей c помощью интерактивной системы имитационного моделирования
- 8.1. Структура интерактивной системы имитационного моделирования
- 8.2. Построение концептуальной схемы модели
- 8.3. Параметрическая настройка модели
- 8.4. Генератор формул
- 8.5. Управление экспериментом
- 8.6. Запуск эксперимента и обработка результатов моделирования
- 8.7. Управление проектами и общей настройкой системы
- 8.8. Пример построения модели средствамиIss2000
- Глава 9. Технология имитационного моделирования
- 9.1. Имитационные проекты
- 9.2. Организация экспериментов
- 9.3. Проблемы организации имитационных экспериментов
- 9.4. Оценка точности результатов моделирования
- 9.5. Факторный план
- 9.6. Дисперсионный анализAnovAв планировании экспериментов
- 9.7. Библиотечная процедураAnova
- 9.8. Технология проведение дисперсионного анализа в системеGpssWorld
- 9.9. Особенности планирования экспериментов
- 9.10. Нахождение экстремальных значений на поверхности отклика
- 9.11. Организация экспериментов вGpssWorId
- 9.L2. Выбор наилучшего варианта структуры системы
- Глава 10. Примеры принятия решенийcпомощью имитационного моделирования
- 10.1. Моделирование производственного участка
- 10.2. Моделирование технологического процесса ремонта и замены оборудования
- Приложение Системные сча
- Сча транзактов
- Сча блоков:
- Сча одноканальных устройств:
- Сча очередей
- Сча таблиц
- Сча ячеек и матриц ячеек сохраняемых величин:
- Сча вычислительных объектов
- Список литературы
- Срдержание
- Глава 5. Моделирование вычислительных и операционных систем 132
- Глава 10. Примеры принятия решений c помощью имитационного моделирования 201