8.2.1. Основные определения
Онтология (от др.-греч. онтос — сущее, логос — учение, понятие) — термин, определяющий учение о бытии, о сущем, в отличие от гносеологии — учения о познании. Уже у X. Вольфа (1679-1754), автора самого термина «онтология», учение о бытии было отделено от учения о познании. Введен же термин в философскую литературу немецким философом Р. Гоклениусом (1547-1628). При этом онтология являлась частью метафизики, наукой самостоятельной, независимой и не связанной с логикой, с «практической философией», с науками о природе. Ее предмет составляет изучение абстрактных и общих философских категорий, таких как бытие, субстанция, причина, действие, явление и т. д., а сама онтология как наука претендовала на полное объяснение причин всех явлений [Розенталь и др., 1951].
Понятно, что такое определение мало пригодно для практического использования, но дает отправную точку для дальнейшей конкретизации и обсуждения с точки зрения целей настоящего издания. В этом смысле интереснее определение онтологии, предложенное в рамках разработки системы стандартов на мульти-агентные системы международным сообществом FIPA (Foundation for Intelligent Physical Agents). В работе [FIPA, 1998] утверждается, что
П В философском смысле можно ссылаться на онтологию как на определенную систему категорий, являющихся следствием определенного взгляда на мир.
С Онтологией [Gruber, 1993] называется эксплицитная спецификация концептуализации. Формально онтология состоит из терминов, организованных в таксономию, их определений и атрибутов, а также связанных с ними аксиом и правил вывода.
Часто набор предположений, составляющих онтологию, имеет форму логической теории первого порядка, где термины словаря являются именами унарных и бинарных предикатов, называемых соответственно концептами и отношениями. В простейшем случае онтология описывает только иерархию концептов, связанных отношениями категоризации. В более сложных случаях в нее добавляются подходящие аксиомы для выражения других отношений между концептами и для того, чтобы ограничить их предполагаемую интерпретацию. Учитывая вышесказанное, онтология представляет собой базу знаний, описывающую факты, которые предполагаются всегда истинными в рамках определенного сообщества на основе общепринятого смысла используемого словаря.
Еще более конкретно понятие онтологии в известном проекте Ontolingua [Far-quhar et al., 1996], который активно ведется в Стэнфордском университете. Здесь предполагается, что
Онтология — это эксплицитная спецификация определенной темы.
Такой подход предполагает формальное и декларативное представление некоторой темы, которое включает словарь (или список констант) для отсылки к терминам предметной области, ограничения целостности на термины, логические утверждения, которые ограничивают интерпретацию терминов и то, как они соотносятся друг с другом.
Резюмируя вышесказанное, можно констатировать, что в настоящее время понимание термина «онтология» различно, в зависимости от контекста и целей его использования. В работе [Guarino, et al., 1995a] дано достаточно содержательное и интересное обсуждение этих вопросов, которое сводится в конечном счете к тому, что здесь выделяются следующие аспекты интерпретации этого термина:
1. Онтология как философская дисциплина.
2. Онтология как неформальная концептуальная система.
3. Онтология как формальный взгляд на семантику.
4. Онтология как спецификация «концептуализации».
5. Онтология как представление концептуальной системы через логическую теорию, характеризуемую:
специальными формальными свойствами или
только ее назначением.
6. Онтология как словарь, используемый логической теорией.
7. Онтология как (метауровневая) спецификация логической теории.
Следует отметить, что первая интерпретация радикально отличается от остальных и связана, как предлагают авторы вышеуказанной работы, с тем, что здесь мы говорим об Онтологии (с большой буквы) и имеем в виду философскую дисциплину, изучающую, согласно Аристотелю, природу и организацию сущего. В этом смысле Онтология пытается ответить на вопрос: «Что есть сущее?» или, в другой формулировке, на вопрос: «Какие свойства являются общими для всего сущего?» Когда же мы говорим об онтологии (с маленькой буквы), то ссылаемся на объект, природа которого может быть различной, в зависимости от выбора между интерпретациями 2-7. Согласно второй интерпретации онтология является концептуальной системой, которую мы можем предполагать в качестве базиса определенной БЗ. Согласно интерпретации 3 онтология, на основе которой построена БЗ, выражается в терминах подходящих формальных структур на семантическом уровне. Таким образом, эти две интерпретации рассматривают онтологию как концептуальную «семантическую» сущность, неважно, формальную или неформальную, в то время как интерпретации 5-7 трактуют онтологию как специальный «синтаксический» объект. Оставшаяся, четвертая интерпретация, которая была предложена Грубером [Gruber, 1993] в качестве определения онтологии для использования в рамках ИИ-сообщества, — одна из наиболее проблематичных, так как точный смысл ее зависит от понимания терминов «спецификация» и «концептуализация». И вместе с тем именно это определение чаще всего и используется в настоящее время в работах по проектированию и исследованию онтологии.
Для определенности дальнейшего изложения мы будем считать, что
Онтологии — это БЗ специального типа, которые могут «читаться» и пониматься, отчуждаться от разработчика и/или физически разделяться их пользователями.
При этом онтологический инжиниринг — ветвь инженерии знаний, использующий Онтологию (с большой буквы) для построения онтологии (с маленькой буквы). Понятно, что любая онтология имеет под собой концептуализацию, но одна концептуализация может быть основой разных онтологии, и две разные БЗ могут отражать одну онтологию.
- Т. А. Гаврилова в. Ф. Хорошевский
- Санкт-Петербург
- Предисловие
- Об авторах
- 1.1.2. Зарождение нейрокибернетики
- 1.1.3. От кибернетики «черного ящика» к ии
- 1.1.4. История искусственного интеллекта в России
- 1.2. Основные направления исследований в области искусственного интеллекта
- 1.2.1. Представление знаний и разработка систем, основанных на знаниях (knowledge-based
- 1.2.2. Программное обеспечение систем
- 1.2.3. Разработка естественно-языковых интерфейсов и машинный перевод (natural
- 1.2.4. Интеллектуальные роботы (robotics)
- 1.2.5. Обучение и самообучение (machine
- 1.2.6. Распознавание образов (pattern
- 1.2.7. Новые архитектуры компьютеров (new
- 1.2.8. Игры и машинное творчество
- 1.2.9. Другие направления
- 1.3. Представление знаний и вывод на знаниях
- 1.3.1. Данные и знания
- 1.3.2. Модели представления знаний
- Структура фрейма
- 1.3.3. Вывод на знаниях
- 1.4. Нечеткие знания
- 1.4.1. Основы теории нечетких множеств
- 1.4.2. Операции с нечеткими знаниями
- 1.5. Прикладные интеллектуальные системы
- 2.2. Классификация систем, основанных на знаниях
- 2.2.1. Классификация по решаемой задаче
- 2.2.2. Классификация по связи с реальным временем
- 2.2.3. Классификация по типу эвм
- 2.2.4. Классификация по степени интеграции с другими программами
- 2.3. Коллектив разработчиков
- 2.4. Технология проектирования и разработки
- 2.4.1. Проблемы разработки промышленных эс
- 2.4.2. Выбор подходящей проблемы
- 2.4.3. Технология быстрого прототипирования
- 2.4.4. Развитие прототипа до промышленной эс
- 2.4.5. Оценка системы
- 2.4.6. Стыковка системы
- 2.4.7. Поддержка системы
- Теоретические аспекты инженерии знаний
- 3.1. Поле знаний
- 3.1.1. О языке описания поля знаний
- 3.1.2. Семиотическая модель поля знаний
- 3.1.3. «Пирамида» знаний
- 3.2. Стратегии получения знаний
- 3.3. Теоретические аспекты извлечения знаний
- 3.3.1. Психологический аспект
- 3.3.2. Лингвистический аспект
- 3.3.3. Гносеологический аспект извлечения знаний
- 3.4. Теоретические аспекты структурирования знаний
- 3.4.1. Историческая справка
- 3.4.2. Иерархический подход
- 3.4.3. Традиционные методологии структурирования
- 3.4.4. Объектно-структурный подход (осп)
- Технологии инженерии знаний
- 4.1. Классификация методов практического извлечения знаний
- 4.2. Коммуникативные методы
- 4.2.1. Пассивные методы
- Сравнительные характеристики пассивных методов извлечения знаний
- 4.2.2. Активные индивидуальные методы
- Сравнительные характеристики активных индивидуальных методов извлечения
- 4.2.3. Активные групповые методы
- 4.3. Текстологические методы
- 4.4. Простейшие методы структурирования
- 4.4.1. Алгоритм для «чайников»
- 4.4.2. Специальные методы структурирования
- 4.5. Состояние и перспективы автоматизированного приобретения знаний
- 4.5.1. Эволюция систем приобретения знаний
- 4.5.2. Современное состояние автоматизированных систем приобретения знаний
- 4.6.2. Имитация консультаций
- 4.6.3. Интегрированные среды приобретения знаний
- 4.6.4. Приобретение знаний из текстов
- 4.6.5. Инструментарий прямого приобретения
- Формы сообщений
- 5.1.1. Семантические пространства и психологическое шкалирование
- 5.1.2. Методы многомерного шкалирования
- 5.1.3. Использование метафор для выявления «скрытых» структур знаний
- 5.2. Метод репертуарных решеток
- 5.2.1. Основные понятия
- 5.2.2. Методы выявления конструктов
- 5.2.3. Анализ репертуарных решеток
- 5.2.4. Автоматизированные методы
- 5.3. Управление знаниями
- 5.3.1. Что такое «управление знаниями»
- 5.3.2. Управление знаниям и корпоративная память
- 5.3.3. Системы omis
- 5.3.4. Особенности разработки omis
- 5.4. Визуальное проектирование баз знаний как инструмент познания
- 5.4.1. От понятийных карт к семантическим сетям
- 5.4.2. База знаний как познавательный инструмент
- 5.5. Проектирование гипермедиа бд и адаптивных обучающих систем
- 5.5.1. Гипертекстовые системы
- 5.5.2. От мультимедиа к гипермедиа
- 5.5.3. На пути к адаптивным обучающим системам
- 6.1.3. Инструментальные средства поддержки разработки систем по
- 6.2. Методологии создания и модели жизненного цикла интеллектуальных систем
- 6.3. Языки программирования для ии и языки представления знаний
- 6.4. Инструментальные пакеты для ии
- 6.5. WorkBench-системы
- Пример разработки системы, основанной на знаниях
- 7.1. Продукционно-фреймовый япз pilot/2
- 7.1.1. Структура пилот-программ и управление выводом
- 7.1.2. Декларативное представление данных и знаний
- 7.1.3. Процедурные средства языка
- 7.2. Психодиагностика — пример предметной области для построения экспертных систем
- 7.2.1. Особенности предметной области
- 7.2.2. Батарея психодиагностических эс «Ориентир»
- 7.3. Разработка и реализация психодиагностической эс «Cattell»
- 7.3.1. Архитектура системы и ее база знаний
- 7.3.2. Общение с пользователем и опрос испытуемых
- 7.3.3. Вывод портретов и генерация их текстовых представлений
- 7.3.4. Помощь и объяснения в эс «Cattell»
- 8.1.2. Html — язык гипертекстовой разметки Интернет-документов
- 8.1.3. Возможности представления знаний на базе языка html
- 8.2. Онтологии и онтологические системы
- 8.2.1. Основные определения
- 8.2.2. Модели онтологии и онтологической системы
- 8.2.3. Методологии создания и «жизненный цикл» онтологии
- Фрагмент описания аксиомы
- 8.2.4. Примеры онтологии
- 8.3. Системы и средства представления онтологических знаний
- 8.8.1. Основные подходы
- 8.3.2. Инициатива (ка)2 и инструментарий Ontobroker
- 8.3.3. Проект shoe — спецификация онтологии и инструментарий
- 8.3.4. Другие подходы и тенденции
- 9.1.2. Основные понятия
- 9.2.2. Инструментарий AgentBuilder
- 9.2.3. Система Bee-gent
- 9.3. Информационный поиск в среде Интернет
- 9.3.1. Машины поиска
- 9.3.2. Неспециализированные и специализированные поисковые агенты
- 9.3.3. Системы интеллектуальных поисковых агентов
- Заключение
- Литература
- Содержание
- Базы знаний интеллектуальных систем
- 196105, Санкт-Петербург, ул. Благодатная, 67.
- 197110, Санкт-Петербург, Чкаловский пр., 15.