8.2.4. Примеры онтологии
В настоящее время исследования в области онтологии и онтологических систем являются «горячими точками» не только в ИИ, но и в работах по интеллектуализации информационного поиска, в первую очередь, в среде Интернет; в работах по мультиагентным системам; в проектах по автоматическому «извлечению» знаний из текстов на естественном языке; в проектах, ведущихся в смежных областях.
При этом разные авторы вводят различные типизации онтологии [Gruber, 1995; Guarino, 1996], суммируя которые можно выделить классификации по:
• степени зависимости от конкретной задачи или предметной области;
• уровню детализации аксиоматизации;
• «природе» предметной области и т. д.
Дополнительно к этим измерениям можно ввести и классификации, связанные с разработкой, реализацией и сопровождением онтологии, но такая типизация более уместна при обсуждении вопросов реализации онтологических систем.
По степени зависимости от конкретной задачи или предметной области обычно различают:
• онтологии верхнего уровня;
• онтологии, ориентированные на предметную область;
• онтологии, ориентированные на конкретную задачу;
• прикладные онтологии.
Онтологии верхнего уровня описывают очень общие концепты, такие как пространство, время, материя, объект, событие, действие и т. д., которые независимы от конкретной проблемы или области. Поэтому представляется разумным, по крайней мере в теории, унифицировать их для больших сообществ пользователей.
Примером такой общей онтологиии является CYC® [Lenat, 1995]. Одноименный проект — CYC® — ориентирован на создание мультиконтекстной базы знаний и специальной машины вывода, разрабатываемой Сусогр. Основная цель этого гигантского проекта — построить базу знаний всех общих понятий (начиная с таких, как время, сущность и т. д.), включающую семантическую структуру терминов, связей между ними и аксиом. Предполагается, что такая база знаний может быть доступна разнообразным программным средствам, работающим со знаниями, и будет играть роль базы «начальных знаний». В онтологии, по некоторым данным, уже представлены 106 концептов и 105 аксиом. Для представления знаний в рамках этого проекта разработан специальный язык CYCL.
Другим примером онтологии верхнего уровня является онтология системы Gene-railized Upper Model [Braetman et al., 1994], ориентированная на поддержку процессов обработки естественного языка: английского, немецкого и итальянского. Уровень абстракции этой онтологии находится между лексическими и концептуальными знаниями, что определяется требованиями упрощения интерфейсов с лингвистическими ресурсами. Модель Generalized Upper Model включает таксономию, организованную в виде иерархии концептов (около 250 понятий) и отдельной иерархии связей. Фрагмент системы понятий этой онтологии приведен на рис. 8.10.
В целом же можно констатировать, что, несмотря на отдельные успехи, создание достаточно общих онтологии верхнего уровня представляет собой очень серьезную задачу, которая еще не имеет удовлетворительного решения.
Рис. 8.10. Фрагмент системы понятий онтологии Generalized Upper Model
Предметные онтологии и онтологии задач описывают, соответственно, словарь, связанный с предметной областью (медицина, коммерция и т. д.) или с конкретной задачей или деятельностью (диагностика, продажи и т. п.) за счет специализации терминов, введенных в онтологии верхнего уровня. Примерами онтологии, ориентированных на определенную предметную область и конкретную задачу, являются TOVE и Plinius соответственно [TOVE, 1999; Van der Vet et al'., 1994].
Онтология в системе TOVE (Toronto Virtual Enterprise Project) [TOVE, 1999] предметно ориентирована на представление модели корпорации. Основная цель ее разработки — отвечать на вопросы пользователей по реинжинирингу бизнес-процессов, извлекая эксплицитно представленные в онтологии знания. При этом система может проводить дедуктивный вывод ответов. В онтологии нет средств для интеграции с другими онтологиями. Формально онтология описывается с помощью фреймов. Таксономия понятий онтологии TOVE представлена на рис. 8.11.
Прикладные онтологии описывают концепты, зависящие как от конкретной предметной области, так и от задач, которые в них решаются. Концепты в таких онтологиях часто соответствуют ролям, которые играют объекты в предметной области в процессе выполнения определенной деятельности. Пример такой онтологии — онтология системы Plinius [Van der Vet et al., 1994], предназначенная для полуавтоматического извлечения знаний из текстов в области химии. В отличие от других, упомянутых выше онтологии, здесь нет явной таксономии понятий. Вместо этого определено несколько множеств атомарных концептов, таких как, например, химический элемент, целое число и т. п., и правила конструирования остальных концептов. В онтологии описано около 150 концептов и б правил. Формально онтология Plinius тоже описывается с помощью фреймов.
Рис. 8.11. Фрагмент таксономии понятий онтологии TOVE
Как показывает анализ работ в этой области, научными сообществами и колективами создаются онтологии разных типов, но в целом в настоящее время наиболее активно разрабатываются и используются на практике предметные онтологии.
Вместе с тем, независимо от типа оптолоши, для их представления и использования требуются специальные алгоритмические средства, к обсуждению которых мы и переходим в следующем параграфе.
- Т. А. Гаврилова в. Ф. Хорошевский
- Санкт-Петербург
- Предисловие
- Об авторах
- 1.1.2. Зарождение нейрокибернетики
- 1.1.3. От кибернетики «черного ящика» к ии
- 1.1.4. История искусственного интеллекта в России
- 1.2. Основные направления исследований в области искусственного интеллекта
- 1.2.1. Представление знаний и разработка систем, основанных на знаниях (knowledge-based
- 1.2.2. Программное обеспечение систем
- 1.2.3. Разработка естественно-языковых интерфейсов и машинный перевод (natural
- 1.2.4. Интеллектуальные роботы (robotics)
- 1.2.5. Обучение и самообучение (machine
- 1.2.6. Распознавание образов (pattern
- 1.2.7. Новые архитектуры компьютеров (new
- 1.2.8. Игры и машинное творчество
- 1.2.9. Другие направления
- 1.3. Представление знаний и вывод на знаниях
- 1.3.1. Данные и знания
- 1.3.2. Модели представления знаний
- Структура фрейма
- 1.3.3. Вывод на знаниях
- 1.4. Нечеткие знания
- 1.4.1. Основы теории нечетких множеств
- 1.4.2. Операции с нечеткими знаниями
- 1.5. Прикладные интеллектуальные системы
- 2.2. Классификация систем, основанных на знаниях
- 2.2.1. Классификация по решаемой задаче
- 2.2.2. Классификация по связи с реальным временем
- 2.2.3. Классификация по типу эвм
- 2.2.4. Классификация по степени интеграции с другими программами
- 2.3. Коллектив разработчиков
- 2.4. Технология проектирования и разработки
- 2.4.1. Проблемы разработки промышленных эс
- 2.4.2. Выбор подходящей проблемы
- 2.4.3. Технология быстрого прототипирования
- 2.4.4. Развитие прототипа до промышленной эс
- 2.4.5. Оценка системы
- 2.4.6. Стыковка системы
- 2.4.7. Поддержка системы
- Теоретические аспекты инженерии знаний
- 3.1. Поле знаний
- 3.1.1. О языке описания поля знаний
- 3.1.2. Семиотическая модель поля знаний
- 3.1.3. «Пирамида» знаний
- 3.2. Стратегии получения знаний
- 3.3. Теоретические аспекты извлечения знаний
- 3.3.1. Психологический аспект
- 3.3.2. Лингвистический аспект
- 3.3.3. Гносеологический аспект извлечения знаний
- 3.4. Теоретические аспекты структурирования знаний
- 3.4.1. Историческая справка
- 3.4.2. Иерархический подход
- 3.4.3. Традиционные методологии структурирования
- 3.4.4. Объектно-структурный подход (осп)
- Технологии инженерии знаний
- 4.1. Классификация методов практического извлечения знаний
- 4.2. Коммуникативные методы
- 4.2.1. Пассивные методы
- Сравнительные характеристики пассивных методов извлечения знаний
- 4.2.2. Активные индивидуальные методы
- Сравнительные характеристики активных индивидуальных методов извлечения
- 4.2.3. Активные групповые методы
- 4.3. Текстологические методы
- 4.4. Простейшие методы структурирования
- 4.4.1. Алгоритм для «чайников»
- 4.4.2. Специальные методы структурирования
- 4.5. Состояние и перспективы автоматизированного приобретения знаний
- 4.5.1. Эволюция систем приобретения знаний
- 4.5.2. Современное состояние автоматизированных систем приобретения знаний
- 4.6.2. Имитация консультаций
- 4.6.3. Интегрированные среды приобретения знаний
- 4.6.4. Приобретение знаний из текстов
- 4.6.5. Инструментарий прямого приобретения
- Формы сообщений
- 5.1.1. Семантические пространства и психологическое шкалирование
- 5.1.2. Методы многомерного шкалирования
- 5.1.3. Использование метафор для выявления «скрытых» структур знаний
- 5.2. Метод репертуарных решеток
- 5.2.1. Основные понятия
- 5.2.2. Методы выявления конструктов
- 5.2.3. Анализ репертуарных решеток
- 5.2.4. Автоматизированные методы
- 5.3. Управление знаниями
- 5.3.1. Что такое «управление знаниями»
- 5.3.2. Управление знаниям и корпоративная память
- 5.3.3. Системы omis
- 5.3.4. Особенности разработки omis
- 5.4. Визуальное проектирование баз знаний как инструмент познания
- 5.4.1. От понятийных карт к семантическим сетям
- 5.4.2. База знаний как познавательный инструмент
- 5.5. Проектирование гипермедиа бд и адаптивных обучающих систем
- 5.5.1. Гипертекстовые системы
- 5.5.2. От мультимедиа к гипермедиа
- 5.5.3. На пути к адаптивным обучающим системам
- 6.1.3. Инструментальные средства поддержки разработки систем по
- 6.2. Методологии создания и модели жизненного цикла интеллектуальных систем
- 6.3. Языки программирования для ии и языки представления знаний
- 6.4. Инструментальные пакеты для ии
- 6.5. WorkBench-системы
- Пример разработки системы, основанной на знаниях
- 7.1. Продукционно-фреймовый япз pilot/2
- 7.1.1. Структура пилот-программ и управление выводом
- 7.1.2. Декларативное представление данных и знаний
- 7.1.3. Процедурные средства языка
- 7.2. Психодиагностика — пример предметной области для построения экспертных систем
- 7.2.1. Особенности предметной области
- 7.2.2. Батарея психодиагностических эс «Ориентир»
- 7.3. Разработка и реализация психодиагностической эс «Cattell»
- 7.3.1. Архитектура системы и ее база знаний
- 7.3.2. Общение с пользователем и опрос испытуемых
- 7.3.3. Вывод портретов и генерация их текстовых представлений
- 7.3.4. Помощь и объяснения в эс «Cattell»
- 8.1.2. Html — язык гипертекстовой разметки Интернет-документов
- 8.1.3. Возможности представления знаний на базе языка html
- 8.2. Онтологии и онтологические системы
- 8.2.1. Основные определения
- 8.2.2. Модели онтологии и онтологической системы
- 8.2.3. Методологии создания и «жизненный цикл» онтологии
- Фрагмент описания аксиомы
- 8.2.4. Примеры онтологии
- 8.3. Системы и средства представления онтологических знаний
- 8.8.1. Основные подходы
- 8.3.2. Инициатива (ка)2 и инструментарий Ontobroker
- 8.3.3. Проект shoe — спецификация онтологии и инструментарий
- 8.3.4. Другие подходы и тенденции
- 9.1.2. Основные понятия
- 9.2.2. Инструментарий AgentBuilder
- 9.2.3. Система Bee-gent
- 9.3. Информационный поиск в среде Интернет
- 9.3.1. Машины поиска
- 9.3.2. Неспециализированные и специализированные поисковые агенты
- 9.3.3. Системы интеллектуальных поисковых агентов
- Заключение
- Литература
- Содержание
- Базы знаний интеллектуальных систем
- 196105, Санкт-Петербург, ул. Благодатная, 67.
- 197110, Санкт-Петербург, Чкаловский пр., 15.