2.4.2. Выбор подходящей проблемы
Этот этап определяет деятельность, предшествующую решению начать разрабатывать конкретную ЭС. Он включает [Николов и др., 1990]:
• определение проблемной области и задачи;
• нахождение эксперта, желающего сотрудничать при решении проблемы, и назначение коллектива разработчиков;
• определение предварительного подхода к решению проблемы;
• анализ расходов и прибылей от разработки;
• подготовку подробного плана разработки.
Правильный выбор проблемы представляет самую критическую часть разработки в целом. Если выбрать неподходящую проблему, можно очень быстро увязнуть в «болоте» проектирования задач, которые никто не знает, как решать. Неподходящая проблема может также привести к созданию экспертной системы, которая стоит намного больше, чем экономит. Дело будет обстоять еще хуже, если разработать систему, которая работает, но неприемлема для пользователей. Даже если разработка выполняется самой организацией для собственных целей, эта фаза является подходящим моментом для получения рекомендаций извне, чтобы гарантировать удачно выбранный и осуществимый с технической точки зрения первоначальный проект.
При выборе области применения следует учитывать, что если знание, необходимое для решения задач, постоянное, четко формулируемое и связано с вычислительной обработкой, то обычные алгоритмические программы, по всей вероятности, будут самым целесообразным способом решения проблем в этой области.
Экспертная система ни в коем случае не устранит потребность в реляционных базах данных, статистическом программном обеспечении, электронных таблицах и системах текстовой обработки. Но если результативность задачи зависит от знания, которое является субъективным, изменяющимся, символьным или вытекающим частично из соображений здравого смысла, тогда область может обоснованно выступать претендентом на экспертную систему.
Обычно экспертные системы разрабатываются путем получения специфических знаний от эксперта и ввода их в систему. Некоторые системы могут содержать стратегии одного индивида. Следовательно, найти подходящего эксперта — это ключевой шаг в создании экспертных систем.
В процессе разработки и последующего расширения системы инженер по знаниям и эксперт обычно работают вместе. Инженер по знаниям помогает эксперту структурировать знания, определять и формализовать понятия и правила, необходимые для решения проблемы.
Во время первоначальных бесед они должны решить, будет ли их сотрудничество успешным. Это немаловажно, поскольку обе стороны будут работать совместно, по меньшей мере в течение одного года. Кроме них в коллектив разработчиков целесообразно включить потенциальных пользователей и профессиональных программистов. Подробно функции каждого члена коллектива описаны в следующем параграфе.
Предварительный подход к программной реализации задачи определяется, исходя из характеристик задачи и ресурсов, выделенных на ее решение. Инженер по знаниям выдвигает обычно несколько вариантов, связанных с использованием имеющихся на рынке программных средств. Окончательный выбор возможен лишь на этапе разработки прототипа.
После того как задача определена, необходимо подсчитать расходы и прибыль от разработки экспертной системы. В расходы включаются затраты на оплату труда коллектива разработчиков. В дополнительные расходы будет включена стоимость приобретаемого программного инструментария, с помощью которого будет разработана экспертная система.
Прибыль может быть получена за счет снижения цены продукции, повышения производительности труда, расширения номенклатуры продукции или услуг или даже разработки новых видов продукции или услуг в области, в которой будет использоваться ЭС. Соответствующие расходы и прибыль от системы определяются относительно времени, в течение которого возвращаются средства, вложенные в разработку. На современном этапе большая часть фирм, развивающих крупные экспертные системы, предпочли разрабатывать дорогостоящие проекты, приносящие значительную прибыль.
Можно ожидать развития тенденции разработки менее дорогостоящих систем, хотя и с более длительным сроком окупаемости вложенных в них средств, так как программные средства разработки экспертных систем непрерывно совершенствуются. После того как инженер по знаниям убедился, что:
• данная задача может быть решена с помощью экспертной системы;
• экспертную систему можно создать предлагаемыми на рынке средствами;
• имеется подходящий эксперт;
• предложенные критерии производительности являются разумными;
• затраты и срок их окупаемости приемлемы для заказчика,
он составляет план разработки. План определяет шаги процесса разработки и необходимые затраты, а также ожидаемые результаты.
- Т. А. Гаврилова в. Ф. Хорошевский
- Санкт-Петербург
- Предисловие
- Об авторах
- 1.1.2. Зарождение нейрокибернетики
- 1.1.3. От кибернетики «черного ящика» к ии
- 1.1.4. История искусственного интеллекта в России
- 1.2. Основные направления исследований в области искусственного интеллекта
- 1.2.1. Представление знаний и разработка систем, основанных на знаниях (knowledge-based
- 1.2.2. Программное обеспечение систем
- 1.2.3. Разработка естественно-языковых интерфейсов и машинный перевод (natural
- 1.2.4. Интеллектуальные роботы (robotics)
- 1.2.5. Обучение и самообучение (machine
- 1.2.6. Распознавание образов (pattern
- 1.2.7. Новые архитектуры компьютеров (new
- 1.2.8. Игры и машинное творчество
- 1.2.9. Другие направления
- 1.3. Представление знаний и вывод на знаниях
- 1.3.1. Данные и знания
- 1.3.2. Модели представления знаний
- Структура фрейма
- 1.3.3. Вывод на знаниях
- 1.4. Нечеткие знания
- 1.4.1. Основы теории нечетких множеств
- 1.4.2. Операции с нечеткими знаниями
- 1.5. Прикладные интеллектуальные системы
- 2.2. Классификация систем, основанных на знаниях
- 2.2.1. Классификация по решаемой задаче
- 2.2.2. Классификация по связи с реальным временем
- 2.2.3. Классификация по типу эвм
- 2.2.4. Классификация по степени интеграции с другими программами
- 2.3. Коллектив разработчиков
- 2.4. Технология проектирования и разработки
- 2.4.1. Проблемы разработки промышленных эс
- 2.4.2. Выбор подходящей проблемы
- 2.4.3. Технология быстрого прототипирования
- 2.4.4. Развитие прототипа до промышленной эс
- 2.4.5. Оценка системы
- 2.4.6. Стыковка системы
- 2.4.7. Поддержка системы
- Теоретические аспекты инженерии знаний
- 3.1. Поле знаний
- 3.1.1. О языке описания поля знаний
- 3.1.2. Семиотическая модель поля знаний
- 3.1.3. «Пирамида» знаний
- 3.2. Стратегии получения знаний
- 3.3. Теоретические аспекты извлечения знаний
- 3.3.1. Психологический аспект
- 3.3.2. Лингвистический аспект
- 3.3.3. Гносеологический аспект извлечения знаний
- 3.4. Теоретические аспекты структурирования знаний
- 3.4.1. Историческая справка
- 3.4.2. Иерархический подход
- 3.4.3. Традиционные методологии структурирования
- 3.4.4. Объектно-структурный подход (осп)
- Технологии инженерии знаний
- 4.1. Классификация методов практического извлечения знаний
- 4.2. Коммуникативные методы
- 4.2.1. Пассивные методы
- Сравнительные характеристики пассивных методов извлечения знаний
- 4.2.2. Активные индивидуальные методы
- Сравнительные характеристики активных индивидуальных методов извлечения
- 4.2.3. Активные групповые методы
- 4.3. Текстологические методы
- 4.4. Простейшие методы структурирования
- 4.4.1. Алгоритм для «чайников»
- 4.4.2. Специальные методы структурирования
- 4.5. Состояние и перспективы автоматизированного приобретения знаний
- 4.5.1. Эволюция систем приобретения знаний
- 4.5.2. Современное состояние автоматизированных систем приобретения знаний
- 4.6.2. Имитация консультаций
- 4.6.3. Интегрированные среды приобретения знаний
- 4.6.4. Приобретение знаний из текстов
- 4.6.5. Инструментарий прямого приобретения
- Формы сообщений
- 5.1.1. Семантические пространства и психологическое шкалирование
- 5.1.2. Методы многомерного шкалирования
- 5.1.3. Использование метафор для выявления «скрытых» структур знаний
- 5.2. Метод репертуарных решеток
- 5.2.1. Основные понятия
- 5.2.2. Методы выявления конструктов
- 5.2.3. Анализ репертуарных решеток
- 5.2.4. Автоматизированные методы
- 5.3. Управление знаниями
- 5.3.1. Что такое «управление знаниями»
- 5.3.2. Управление знаниям и корпоративная память
- 5.3.3. Системы omis
- 5.3.4. Особенности разработки omis
- 5.4. Визуальное проектирование баз знаний как инструмент познания
- 5.4.1. От понятийных карт к семантическим сетям
- 5.4.2. База знаний как познавательный инструмент
- 5.5. Проектирование гипермедиа бд и адаптивных обучающих систем
- 5.5.1. Гипертекстовые системы
- 5.5.2. От мультимедиа к гипермедиа
- 5.5.3. На пути к адаптивным обучающим системам
- 6.1.3. Инструментальные средства поддержки разработки систем по
- 6.2. Методологии создания и модели жизненного цикла интеллектуальных систем
- 6.3. Языки программирования для ии и языки представления знаний
- 6.4. Инструментальные пакеты для ии
- 6.5. WorkBench-системы
- Пример разработки системы, основанной на знаниях
- 7.1. Продукционно-фреймовый япз pilot/2
- 7.1.1. Структура пилот-программ и управление выводом
- 7.1.2. Декларативное представление данных и знаний
- 7.1.3. Процедурные средства языка
- 7.2. Психодиагностика — пример предметной области для построения экспертных систем
- 7.2.1. Особенности предметной области
- 7.2.2. Батарея психодиагностических эс «Ориентир»
- 7.3. Разработка и реализация психодиагностической эс «Cattell»
- 7.3.1. Архитектура системы и ее база знаний
- 7.3.2. Общение с пользователем и опрос испытуемых
- 7.3.3. Вывод портретов и генерация их текстовых представлений
- 7.3.4. Помощь и объяснения в эс «Cattell»
- 8.1.2. Html — язык гипертекстовой разметки Интернет-документов
- 8.1.3. Возможности представления знаний на базе языка html
- 8.2. Онтологии и онтологические системы
- 8.2.1. Основные определения
- 8.2.2. Модели онтологии и онтологической системы
- 8.2.3. Методологии создания и «жизненный цикл» онтологии
- Фрагмент описания аксиомы
- 8.2.4. Примеры онтологии
- 8.3. Системы и средства представления онтологических знаний
- 8.8.1. Основные подходы
- 8.3.2. Инициатива (ка)2 и инструментарий Ontobroker
- 8.3.3. Проект shoe — спецификация онтологии и инструментарий
- 8.3.4. Другие подходы и тенденции
- 9.1.2. Основные понятия
- 9.2.2. Инструментарий AgentBuilder
- 9.2.3. Система Bee-gent
- 9.3. Информационный поиск в среде Интернет
- 9.3.1. Машины поиска
- 9.3.2. Неспециализированные и специализированные поисковые агенты
- 9.3.3. Системы интеллектуальных поисковых агентов
- Заключение
- Литература
- Содержание
- Базы знаний интеллектуальных систем
- 196105, Санкт-Петербург, ул. Благодатная, 67.
- 197110, Санкт-Петербург, Чкаловский пр., 15.