4.4.2. Специальные методы структурирования
Используя представленный на рис. 4.10 алгоритм, инженер по знаниям может испытывать необходимость в применении специальных методов структурирования на разных шагах алгоритма. При этом, естественно, для таких простых и очевидных шагов, как определение входных и выходных понятий или составление словаря, никаких искусственных методов предлагаться не будет.
Методы выявления объектов, понятий и их атрибутов
Понятие или концепт — это обобщение предметов некоторого класса по их специфическим признакам. Обобщенность является сквозной характеристикой всех когнитивных психических структур, начиная с простейших сенсорных образов.
Так, понятие «автомобиль» объединяет множество различных предметов, но все они имеют четыре колеса, двигатель и массу других деталей, позволяющих перевозить на них грузы и людей. Существует ряд методов выявления понятий предметной области в общем словаре терминов, который составлен на основании сеансов извлечения знаний. При этом важно выявление не только самих понятий, но и их признаков.
Возвращаясь к терминологии, введенной в параграфе 1.3, на этом этапе определяются также интенсионалы и экстенсионалы понятий предметной области. Интенсионал очерчивает понятие через взаимосвязь значимых признаков, а экстенсионал — через перечисление конкретных экземпляров объекта.
Если задача выделения реальных объектов А связана только с наблюдательностью и лингвистическими способностями эксперта и инженера по знаниям, то определение метапонятий В требует от них умения проводить операции обобщения и классификации, которые никогда не считались тривиальными.
Поспелов Д. А. [Поспелов, 1986] предложил ряд подходов к созданию основ теории обобщения и классификации применительно к ситуационному управлению и искусственному интеллекту в целом, а также выделил ряд особенностей задач формирования понятий. Среди них особое место занимает выявление прагматически значимых признаков для формирования понятий, способствующих решению задачи.
Сложность заключается в том, что для многих понятий практически невозможно однозначно определить их признаки, это связано с различными формами репрезентации понятий в памяти человека.
Все методы выявления понятий мы разделили на:
• традиционные, основанные на математическом аппарате распознавания образов и классификации;
• нетрадиционные, основанные на методологии инженерии знаний.
Если первые достаточно хорошо освещены в литературе, то вторые пока менее известны.
Пример 4.8
Интересный эксперимент по выявлению понятий описан в работе [Кук, Макдональд, 1986].
Тридцати студентам, имеющим права на вождение автомобиля, предложили составить словарь терминов предметной области с помощью четырех методов:
1. Формирование перечня понятий (17 %).
2. Интервьюирование специалистов (35 %). .
3. Составление списка элементарных действий (18 %).
4. Составление оглавления учебника (30 %).
Цифры в скобках характеризуют продуктивность соответствующего метода, то есть показывают, какой процент понятий из общего выявленного списка (702 термина) был получен соответствующим методом. Для классификации понятий были привлечены еще два участника эксперимента, которые разделили 702 выявленных понятия на семь категорий (методом сортировки карточек). Таблица 4.5 отражает численные данные концептуализации.
В целом результаты показали, что для выявления непосредственно концептов наиболее результативными оказались методы интервьюирования и составления оглавления учебника. Однако наибольшее число общих правил было порождено в методе списка действий. Таким образом, еще раз подтвердилось утверждение о том, что нет «лучшего» метода, есть методы, подходящие для тех или иных ситуаций и типов знаний.
Таблица 4.5.
Данные концептуализации
Категории | Процент от общего числа терминов | Процент от общегочисла терминов, полученный соответствующим методом | ||||
| Перечень понятий | Интервью- ирование | Список операций | Составление оглавления | ||
Объяснение | 6 | 5,5 | 7,2 | 7,0 | 4,9 | |
Общие правила | 22,0 | 43,6 | 18,9 | 36,8 | 4,9 | |
Режимные правила | 9,0 | 9,8 | 8,4 | 11,6 | 6,6 | |
Понятия | 42,0 | 18,4 | 38,9 | 8,5 | 77,7 | |
Процедуры | 9,0 | 5,1 | 9,5 | 25,6 | 1,2 | |
Факты | 9,0 | 15,0 | 12,5 | 8,9 | 1,2 | |
Прочие понятия | 3,0 | 2,6 | 4,6 | 1,6 | 3,5 |
Интересно, что число правил — продукций «если — то» — составило небольшой процент во всех четырех методах. Это говорит о том, что популярная продукционная модель вряд ли является естественной для человеческих моделей репрезентации знаний.
Методы выявления связей между понятиями
Концепты не существуют независимо, они включены в общую понятийную структуру с помощью отношений. Выявление связей между понятиями при разработке баз знаний доставляет инженеру по знаниям немало проблем. То, что знания в памяти — это некоторые связные структуры, а не отдельные фрагменты, общеизвестно и очевидно. Тем не менее основной упор в существующих моделях представления знаний делается на понятия, а связи вводят весьма примитивные (в основном причинно-следственные).
В последних работах по теории ИИ все больше внимания уделяется взаимосвязанности структур знаний. Так, в работе [Шенк, Бирнбаум, Мей, 1989] введено понятие сценария (script) как некоторой структуры представления знаний. Основу сценария составляет КОП (концептуальная организация памяти) и мета-КОПы — некоторые обобщающие структуры.
Сценарии, в свою очередь, делятся на фрагменты — или сцены (chunks). Связи между фрагментами — временные или пространственные, внутри фрагмента — самые различные: ситуативные, ассоциативные, функциональные и т. д.
Все методы выявления таких связей можно разделить на две группы:
• Формальные.
• Неформальные (основаны на дополнительной работе с экспертом). Неформальные методы выявления связей придумывает инженер по знаниям для того, чтобы вынудить эксперта указать явные и неявные связи между понятиями. Наиболее распространенным является метод «сортировка карточек» в группы [Волков, Ломнев, 1989; Rabbits, Wright, 1987], широко применяемый и для формирования понятий. Другим неформальным методом является построение замкнутых кривых. В этом случае эксперта просят обвести замкнутой кривой связанные Друг с другом понятия [Olson, Renter, 1987]. Этот метод может быть реализован как на бумаге, так и на экране дисплея. В этом случае можно говорить о привлечении элементов когнитивной графики [Зенкин, 1991].
После того как определены связи между понятиями, все понятия как бы распадаются на группы. Такого рода группы представляют собой метапонятия, присвоение имен которым происходит на следующей стадии процесса структурирования.
Методы выделения метапонятий и детализация понятий
(пирамида знаний)
Процесс образования метапонятий, то есть интерпретации групп понятий, полученных на предыдущей стадии, как и обратная процедура — детализация (разукрупнение) понятий, — видимо, принципиально не поддающиеся формализации операции. Они требуют высокой квалификации экспертов, а также наличия способностей к «наклеиванию» лингвистических ярлыков. Если на рис. 4.11 показаны схемы обобщения и детализации на тривиальных примерах, то в реальных предметных областях эта задача оказывается весьма трудоемкой. При этом независимо от того, формальными или неформальными методами были выявлены понятия или детали понятий, присвоение имен которым или интерпретация их — всегда неформальный процесс, в котором инженер по знаниям просит эксперта дать название некоторой группе понятий или отдельных признаков.
Рис. 4.11. Обобщение и детализация понятий
Это не всегда удается. Так, в системе АВТАНТЕСТ [Гаврилова, Червинская, 1992] при образовании метапонятий, полученных методами кластерного анализа, интерпретация заняла несколько месяцев и не может считаться удовлетворительной. Это связано с тем, что формальные методы иногда выделяют «искусственные» концепты, в то время как неформальные обычно — практически используемые и потому легко узнаваемые понятия.
Методы построения пирамиды знаний 'обязательно включают использование наглядного материала — рисунков, схем, кубиков. Уровни пирамиды чаще возникают в сознании инженера по знаниям именно как некоторые образы. Построение пирамиды знаний может быть основано и на естественной иерархии предметной области, например связанной с организационной структурой предприятия или с уровнем компетентности специалистов (рис. 4.12).
Методы определения отношений
Если на стадии 4 (см. рис. 4.10) мы выявили связи между понятиями и использовали их на стадиях 5 и 6 для получения пирамиды знаний, то на стадии 7 мы даем имена связям, то есть превращаем их в отношения.
В работе [Поспелов, 1986] указывается на наличие более 200 базовых видов различных отношений, существующих между понятиями. Предложены различные классификации отношений [Келасьев, 1984; Поспелов, 1986]. Следует только подчеркнуть, что помимо универсальных отношений (пространственных, временных, причинно-следственных) существуют еще и специфические отношения, присущие той или иной предметной области [Гаврилова, Червинская, Яшин, 1988].
Интересные возможности к структурированию знаний добавляют системы когнитивной графики. Так, в системе OPAL [Olton,, Muser, Combs et al., 1987] эксперт может манипулировать на экране дисплея изображениями простейших понятий и строить схемы лечения заболеваний, обозначая отношения явными линиями, которые затем именуются.
Предлагаемая в данном учебнике методология структурирования опирается на современные представления о структуре человеческой памяти и формах репрезентации информации в ней [Величковский, 1982].
Скудность методов структурирования объясняется тем, что методологическая база инженерии знаний только закладывается, а большинство инженеров по знаниям проводит концептуализацию, руководствуясь наиболее дорогими и неэффективными способами — «проб и ошибок» и «по наитию», то есть исходя из соображений здравого смысла.
- Т. А. Гаврилова в. Ф. Хорошевский
- Санкт-Петербург
- Предисловие
- Об авторах
- 1.1.2. Зарождение нейрокибернетики
- 1.1.3. От кибернетики «черного ящика» к ии
- 1.1.4. История искусственного интеллекта в России
- 1.2. Основные направления исследований в области искусственного интеллекта
- 1.2.1. Представление знаний и разработка систем, основанных на знаниях (knowledge-based
- 1.2.2. Программное обеспечение систем
- 1.2.3. Разработка естественно-языковых интерфейсов и машинный перевод (natural
- 1.2.4. Интеллектуальные роботы (robotics)
- 1.2.5. Обучение и самообучение (machine
- 1.2.6. Распознавание образов (pattern
- 1.2.7. Новые архитектуры компьютеров (new
- 1.2.8. Игры и машинное творчество
- 1.2.9. Другие направления
- 1.3. Представление знаний и вывод на знаниях
- 1.3.1. Данные и знания
- 1.3.2. Модели представления знаний
- Структура фрейма
- 1.3.3. Вывод на знаниях
- 1.4. Нечеткие знания
- 1.4.1. Основы теории нечетких множеств
- 1.4.2. Операции с нечеткими знаниями
- 1.5. Прикладные интеллектуальные системы
- 2.2. Классификация систем, основанных на знаниях
- 2.2.1. Классификация по решаемой задаче
- 2.2.2. Классификация по связи с реальным временем
- 2.2.3. Классификация по типу эвм
- 2.2.4. Классификация по степени интеграции с другими программами
- 2.3. Коллектив разработчиков
- 2.4. Технология проектирования и разработки
- 2.4.1. Проблемы разработки промышленных эс
- 2.4.2. Выбор подходящей проблемы
- 2.4.3. Технология быстрого прототипирования
- 2.4.4. Развитие прототипа до промышленной эс
- 2.4.5. Оценка системы
- 2.4.6. Стыковка системы
- 2.4.7. Поддержка системы
- Теоретические аспекты инженерии знаний
- 3.1. Поле знаний
- 3.1.1. О языке описания поля знаний
- 3.1.2. Семиотическая модель поля знаний
- 3.1.3. «Пирамида» знаний
- 3.2. Стратегии получения знаний
- 3.3. Теоретические аспекты извлечения знаний
- 3.3.1. Психологический аспект
- 3.3.2. Лингвистический аспект
- 3.3.3. Гносеологический аспект извлечения знаний
- 3.4. Теоретические аспекты структурирования знаний
- 3.4.1. Историческая справка
- 3.4.2. Иерархический подход
- 3.4.3. Традиционные методологии структурирования
- 3.4.4. Объектно-структурный подход (осп)
- Технологии инженерии знаний
- 4.1. Классификация методов практического извлечения знаний
- 4.2. Коммуникативные методы
- 4.2.1. Пассивные методы
- Сравнительные характеристики пассивных методов извлечения знаний
- 4.2.2. Активные индивидуальные методы
- Сравнительные характеристики активных индивидуальных методов извлечения
- 4.2.3. Активные групповые методы
- 4.3. Текстологические методы
- 4.4. Простейшие методы структурирования
- 4.4.1. Алгоритм для «чайников»
- 4.4.2. Специальные методы структурирования
- 4.5. Состояние и перспективы автоматизированного приобретения знаний
- 4.5.1. Эволюция систем приобретения знаний
- 4.5.2. Современное состояние автоматизированных систем приобретения знаний
- 4.6.2. Имитация консультаций
- 4.6.3. Интегрированные среды приобретения знаний
- 4.6.4. Приобретение знаний из текстов
- 4.6.5. Инструментарий прямого приобретения
- Формы сообщений
- 5.1.1. Семантические пространства и психологическое шкалирование
- 5.1.2. Методы многомерного шкалирования
- 5.1.3. Использование метафор для выявления «скрытых» структур знаний
- 5.2. Метод репертуарных решеток
- 5.2.1. Основные понятия
- 5.2.2. Методы выявления конструктов
- 5.2.3. Анализ репертуарных решеток
- 5.2.4. Автоматизированные методы
- 5.3. Управление знаниями
- 5.3.1. Что такое «управление знаниями»
- 5.3.2. Управление знаниям и корпоративная память
- 5.3.3. Системы omis
- 5.3.4. Особенности разработки omis
- 5.4. Визуальное проектирование баз знаний как инструмент познания
- 5.4.1. От понятийных карт к семантическим сетям
- 5.4.2. База знаний как познавательный инструмент
- 5.5. Проектирование гипермедиа бд и адаптивных обучающих систем
- 5.5.1. Гипертекстовые системы
- 5.5.2. От мультимедиа к гипермедиа
- 5.5.3. На пути к адаптивным обучающим системам
- 6.1.3. Инструментальные средства поддержки разработки систем по
- 6.2. Методологии создания и модели жизненного цикла интеллектуальных систем
- 6.3. Языки программирования для ии и языки представления знаний
- 6.4. Инструментальные пакеты для ии
- 6.5. WorkBench-системы
- Пример разработки системы, основанной на знаниях
- 7.1. Продукционно-фреймовый япз pilot/2
- 7.1.1. Структура пилот-программ и управление выводом
- 7.1.2. Декларативное представление данных и знаний
- 7.1.3. Процедурные средства языка
- 7.2. Психодиагностика — пример предметной области для построения экспертных систем
- 7.2.1. Особенности предметной области
- 7.2.2. Батарея психодиагностических эс «Ориентир»
- 7.3. Разработка и реализация психодиагностической эс «Cattell»
- 7.3.1. Архитектура системы и ее база знаний
- 7.3.2. Общение с пользователем и опрос испытуемых
- 7.3.3. Вывод портретов и генерация их текстовых представлений
- 7.3.4. Помощь и объяснения в эс «Cattell»
- 8.1.2. Html — язык гипертекстовой разметки Интернет-документов
- 8.1.3. Возможности представления знаний на базе языка html
- 8.2. Онтологии и онтологические системы
- 8.2.1. Основные определения
- 8.2.2. Модели онтологии и онтологической системы
- 8.2.3. Методологии создания и «жизненный цикл» онтологии
- Фрагмент описания аксиомы
- 8.2.4. Примеры онтологии
- 8.3. Системы и средства представления онтологических знаний
- 8.8.1. Основные подходы
- 8.3.2. Инициатива (ка)2 и инструментарий Ontobroker
- 8.3.3. Проект shoe — спецификация онтологии и инструментарий
- 8.3.4. Другие подходы и тенденции
- 9.1.2. Основные понятия
- 9.2.2. Инструментарий AgentBuilder
- 9.2.3. Система Bee-gent
- 9.3. Информационный поиск в среде Интернет
- 9.3.1. Машины поиска
- 9.3.2. Неспециализированные и специализированные поисковые агенты
- 9.3.3. Системы интеллектуальных поисковых агентов
- Заключение
- Литература
- Содержание
- Базы знаний интеллектуальных систем
- 196105, Санкт-Петербург, ул. Благодатная, 67.
- 197110, Санкт-Петербург, Чкаловский пр., 15.