2.4.3. Технология быстрого прототипирования
Прототипиая система является усеченной версией экспертной системы, спроектированной для проверки правильности кодирования фактов, связей и стратегий рассуждения эксперта. Она также дает возможность инженеру по знаниям привлечь эксперта к активному участию в процессе разработки экспертной системы, и, следовательно, к принятию им обязательства приложить все усилия к созданию системы в полном объеме.
Объем прототипа — несколько десятков правил, фреймов или примеров. На рис. 2.4 изображено шесть стадий разработки прототипа и минимальный коллектив разработчиков, занятых на каждой из стадий (пять стадий заимствовано из работы [Хейес-Рот и др., 1987]). Приведем краткую характеристику каждой из стадий, хотя эта схема представляет собой грубое приближение к сложному, итеративному процессу.
Рис. 2.4. Стадии разработки прототипа ЭС
Хотя любое теоретическое разделение бывает часто условным, осознание коллективом разработчиков четких задач каждой стадии представляется целесообразным. Роли разработчиков (эксперт, программист, пользователь и аналитик) являются постоянными на протяжении всей разработки. Совмещение ролей нежелательно.
Сроки приведены условно, так как зависят от квалификации специалистов и особенностей задачи.
Идентификация проблемы
Уточняется задача, планируется ход разработки прототипа экспертной системы, определяются:
• необходимые ресурсы (время, люди, ЭВМ и т. д.);
• источники знаний (книги, дополнительные эксперты, методики);
• имеющиеся аналогичные экспертные системы;
• цели (распространение опыта, автоматизация рутинных Действий и др.);
• Идентификация проблемы — знакомство и обучение членов коллектива разработчиков, а также создание неформальной формулировки проблемы.
Средняя продолжительность 1-2 недели.
Извлечение знаний
На этой стадии происходит перенос компетентности от эксперта к инженеру по знаниям, с использованием различных методов (см. главу 4):
• анализ текстов;
• диалоги;
• экспертные игры;
• лекции;
• дискуссии;
• интервью;
• Извлечение знаний — получение инженером по знаниям наиболее полного из возможных представлений о предметной области и способах принятия решения в ней.
Средняя продолжительность 1-3 месяца.
Структурирование или концептуализация знаний
Выявляется структура полученных знаний о предметной области, то есть определяются:
• терминология;
• список основных понятий и их атрибутов;
• отношения между понятиями;
• структура входной и выходной информации;
• стратегия принятия решений;
• Структурирование (или концептуализация) знаний — разработка неформального описания знаний о предметной области в виде графа, таблицы, диаграммы или текста, которое отражает основные концепции и взаимосвязи между понятиями предметной области.
Такое описание называется полем знаний. Средняя продолжительность этапа 2-4 недели. Подробно стадия структурирования описана в главе 3.
Формализация
Строится формализованное представление концепций предметной области на основе выбранного языка представления знаний (ЯПЗ). Традиционно на этом этапе используются:
• логические методы (исчисления предикатов 1-го порядка и др.);
• продукционные модели (с прямым и обратным выводом);
• семантические сети;
• фреймы;
• объектно-ориентированные языки, основанные на иерархии классов, объектов.
Формализация знаний — разработка базы знаний на языке представления знаний, который, с одной стороны, соответствует структуре поля знаний, а с другой — позволяет реализовать прототип системы на следующей стадии программной реализации.
Все чаще на этой стадии используется симбиоз языков представления знаний, например, в системе ОМЕГА [Справочник по ИИ, 1990] — фреймы + семантические сети + полный набор возможностей языка исчисления предикатов. Средняя продолжительность 1-2 месяца. Подробно см. в главах 3, 4.
Реализация
Создается прототип экспертной системы, включающий базу знаний и остальные блоки, при помощи одного из следующих способов:
• программирование на традиционных языках типа Pascal, C++ и др.;
• программирование на специализированных языках, применяемых в задачах искусственного интеллекта: LISP [Хювянен, Сеппянен, 1991], FRL [Байдун, Бунин, 1990], SMALLTALK [Справочник по ИИ, 1990] и др.;
• использование инструментальных средств разработки ЭС типа СПЭИС [Ковригин, Перфильев, 1988], ПИЭС [Хорошевский, 1993], G2 [Попов, Фоминых, Кисель, 1996];
• использование «пустых» ЭС или «оболочек» типа ЭКСПЕРТ [Кирсанов, Попов, 1990], ФИАКР [Соловьев, Соловьева, 1989] и др.
С Реализация — разработка программного комплекса, демонстрирующего жизнеспособность подхода в целом. Чаще всего первый прототип отбрасывается на этапе реализации действующей ЭС.
Тестирование
Оценивается и проверяется работа программ прототипа с целью приведения в соответствие с реальными запросами пользователей. Прототип проверяется на:
• удобство и адекватность интерфейсов ввода/вывода (характер вопросов в диалоге, связность выводимого текста результата и др.);
• эффективность стратегии управления (порядок перебора, использование нечеткого вывода и др.);
• качество проверочных примеров;
• корректность базы знаний (полнота и непротиворечирость правил).
Тестирование — выявление ошибок в подходе и реализации прототипа и выработка рекомендаций по доводке системы до-промышленного варианта.
Средняя продолжительность 1-2 недели.
- Т. А. Гаврилова в. Ф. Хорошевский
- Санкт-Петербург
- Предисловие
- Об авторах
- 1.1.2. Зарождение нейрокибернетики
- 1.1.3. От кибернетики «черного ящика» к ии
- 1.1.4. История искусственного интеллекта в России
- 1.2. Основные направления исследований в области искусственного интеллекта
- 1.2.1. Представление знаний и разработка систем, основанных на знаниях (knowledge-based
- 1.2.2. Программное обеспечение систем
- 1.2.3. Разработка естественно-языковых интерфейсов и машинный перевод (natural
- 1.2.4. Интеллектуальные роботы (robotics)
- 1.2.5. Обучение и самообучение (machine
- 1.2.6. Распознавание образов (pattern
- 1.2.7. Новые архитектуры компьютеров (new
- 1.2.8. Игры и машинное творчество
- 1.2.9. Другие направления
- 1.3. Представление знаний и вывод на знаниях
- 1.3.1. Данные и знания
- 1.3.2. Модели представления знаний
- Структура фрейма
- 1.3.3. Вывод на знаниях
- 1.4. Нечеткие знания
- 1.4.1. Основы теории нечетких множеств
- 1.4.2. Операции с нечеткими знаниями
- 1.5. Прикладные интеллектуальные системы
- 2.2. Классификация систем, основанных на знаниях
- 2.2.1. Классификация по решаемой задаче
- 2.2.2. Классификация по связи с реальным временем
- 2.2.3. Классификация по типу эвм
- 2.2.4. Классификация по степени интеграции с другими программами
- 2.3. Коллектив разработчиков
- 2.4. Технология проектирования и разработки
- 2.4.1. Проблемы разработки промышленных эс
- 2.4.2. Выбор подходящей проблемы
- 2.4.3. Технология быстрого прототипирования
- 2.4.4. Развитие прототипа до промышленной эс
- 2.4.5. Оценка системы
- 2.4.6. Стыковка системы
- 2.4.7. Поддержка системы
- Теоретические аспекты инженерии знаний
- 3.1. Поле знаний
- 3.1.1. О языке описания поля знаний
- 3.1.2. Семиотическая модель поля знаний
- 3.1.3. «Пирамида» знаний
- 3.2. Стратегии получения знаний
- 3.3. Теоретические аспекты извлечения знаний
- 3.3.1. Психологический аспект
- 3.3.2. Лингвистический аспект
- 3.3.3. Гносеологический аспект извлечения знаний
- 3.4. Теоретические аспекты структурирования знаний
- 3.4.1. Историческая справка
- 3.4.2. Иерархический подход
- 3.4.3. Традиционные методологии структурирования
- 3.4.4. Объектно-структурный подход (осп)
- Технологии инженерии знаний
- 4.1. Классификация методов практического извлечения знаний
- 4.2. Коммуникативные методы
- 4.2.1. Пассивные методы
- Сравнительные характеристики пассивных методов извлечения знаний
- 4.2.2. Активные индивидуальные методы
- Сравнительные характеристики активных индивидуальных методов извлечения
- 4.2.3. Активные групповые методы
- 4.3. Текстологические методы
- 4.4. Простейшие методы структурирования
- 4.4.1. Алгоритм для «чайников»
- 4.4.2. Специальные методы структурирования
- 4.5. Состояние и перспективы автоматизированного приобретения знаний
- 4.5.1. Эволюция систем приобретения знаний
- 4.5.2. Современное состояние автоматизированных систем приобретения знаний
- 4.6.2. Имитация консультаций
- 4.6.3. Интегрированные среды приобретения знаний
- 4.6.4. Приобретение знаний из текстов
- 4.6.5. Инструментарий прямого приобретения
- Формы сообщений
- 5.1.1. Семантические пространства и психологическое шкалирование
- 5.1.2. Методы многомерного шкалирования
- 5.1.3. Использование метафор для выявления «скрытых» структур знаний
- 5.2. Метод репертуарных решеток
- 5.2.1. Основные понятия
- 5.2.2. Методы выявления конструктов
- 5.2.3. Анализ репертуарных решеток
- 5.2.4. Автоматизированные методы
- 5.3. Управление знаниями
- 5.3.1. Что такое «управление знаниями»
- 5.3.2. Управление знаниям и корпоративная память
- 5.3.3. Системы omis
- 5.3.4. Особенности разработки omis
- 5.4. Визуальное проектирование баз знаний как инструмент познания
- 5.4.1. От понятийных карт к семантическим сетям
- 5.4.2. База знаний как познавательный инструмент
- 5.5. Проектирование гипермедиа бд и адаптивных обучающих систем
- 5.5.1. Гипертекстовые системы
- 5.5.2. От мультимедиа к гипермедиа
- 5.5.3. На пути к адаптивным обучающим системам
- 6.1.3. Инструментальные средства поддержки разработки систем по
- 6.2. Методологии создания и модели жизненного цикла интеллектуальных систем
- 6.3. Языки программирования для ии и языки представления знаний
- 6.4. Инструментальные пакеты для ии
- 6.5. WorkBench-системы
- Пример разработки системы, основанной на знаниях
- 7.1. Продукционно-фреймовый япз pilot/2
- 7.1.1. Структура пилот-программ и управление выводом
- 7.1.2. Декларативное представление данных и знаний
- 7.1.3. Процедурные средства языка
- 7.2. Психодиагностика — пример предметной области для построения экспертных систем
- 7.2.1. Особенности предметной области
- 7.2.2. Батарея психодиагностических эс «Ориентир»
- 7.3. Разработка и реализация психодиагностической эс «Cattell»
- 7.3.1. Архитектура системы и ее база знаний
- 7.3.2. Общение с пользователем и опрос испытуемых
- 7.3.3. Вывод портретов и генерация их текстовых представлений
- 7.3.4. Помощь и объяснения в эс «Cattell»
- 8.1.2. Html — язык гипертекстовой разметки Интернет-документов
- 8.1.3. Возможности представления знаний на базе языка html
- 8.2. Онтологии и онтологические системы
- 8.2.1. Основные определения
- 8.2.2. Модели онтологии и онтологической системы
- 8.2.3. Методологии создания и «жизненный цикл» онтологии
- Фрагмент описания аксиомы
- 8.2.4. Примеры онтологии
- 8.3. Системы и средства представления онтологических знаний
- 8.8.1. Основные подходы
- 8.3.2. Инициатива (ка)2 и инструментарий Ontobroker
- 8.3.3. Проект shoe — спецификация онтологии и инструментарий
- 8.3.4. Другие подходы и тенденции
- 9.1.2. Основные понятия
- 9.2.2. Инструментарий AgentBuilder
- 9.2.3. Система Bee-gent
- 9.3. Информационный поиск в среде Интернет
- 9.3.1. Машины поиска
- 9.3.2. Неспециализированные и специализированные поисковые агенты
- 9.3.3. Системы интеллектуальных поисковых агентов
- Заключение
- Литература
- Содержание
- Базы знаний интеллектуальных систем
- 196105, Санкт-Петербург, ул. Благодатная, 67.
- 197110, Санкт-Петербург, Чкаловский пр., 15.