3.1.1. О языке описания поля знаний
Поле знаний Pz формируется на третьей стадии разработки ЭС (см. п. 2.4) — стадии структурирования.
Поле знаний, как первый шаг к формализации, представляет модель знаний о предметной области, в том виде, в каком ее сумел выразить аналитик на пекотором «своем» языке. Что это за язык? Известно, что словарь языка конкретной науки формируется путем пополнения общеупотребительного языка специальными терминами и знаками, которые либо заимствуются из повседневного языка, либо изобретаются [Кузичева, 1987]. Назовем этот язык L и рассмотрим его желаемые свойства, учитывая, что стандарта этого языка пока не существует, а каждый инженер по знаниям вынужден сам его изобретать.
Во-первых, как и в языке любой науки, в нем должно быть как можно меньше неточностей, присущих обыденным языкам. Частично точность достигается более строгим определением понятий. Идеалом точности, конечно, является язык математики. Язык L, видимо, занимает промежуточное положение между естественным языком и языком математики.
Во-вторых, желательно не использовать в нем терминов иных наук в другом, то есть новом, смысле. Это вызывает недоразумения.
В-третьих, язык L, видимо, будет либо символьным языком, либо языком графическим (схемы, рисунки, пиктограммы).
При выборе языка описания поля знаний не следует забывать, что на стадии формализации необходимо его заменить на машинно-реализуемый язык представления знаний (ЯПЗ), выбор которого зависит от структуры поля знаний. Существует ряд языков, достаточно универсальных, чтобы претендовать на роль языка инженерии знаний, — это структурно-логический язык SLL, включающий аппарат лямбда-конверсии [Вольфенгаген и др., 1979], язык К-систем [Кузнецов, 1989], УСК [Мартынов, 1977] и др. Однако они не нашли широкого применения.
В некотором смысле создание языка L очень близко к идеям разработки универсальных языков науки [Кузичева, 1987]. К XVII веку сложились два подхода в разработке универсальных языков: создание языков-классификаций и логико-конструктивных языков. К первому примыкают проекты, восходящие к идее Ф. Бэкона, — это языки Вилкинса и Далгарно. Второй подход связан с исследованиями в рамках поиска универсального метода познания, наиболее четко высказанного Р. Декартом, а затем в проекте универсальной характеристики Г. Лейбница. Именно Лейбниц наметил основные контуры учения о символах, которые в соответствии с его замыслами в XVIII веке развивал Г. Ламберт, который дал имя науке «семиотика». Семиотика в основном нашла своих адептов в сфере гуманитарных наук. В последнее время сложилась также новая ветвь семиотики — прикладная семиотика [Pospelov, 1995].
Представители естественных наук еще не до конца осознали достоинства семиотики только из-за того, что имеют дело с достаточно простыми и «жесткими» предметными областями. Им хватает аппарата традиционной математики. В инженерии знаний, однако, мы имеем дело с «мягкими» предметными областями, где явно не хватает выразительной адекватности классического математического аппарата и где большое значение имеет эффективность нотации (ее компактность, простота модификации, ясность интерпретации, наглядность и т. д.). В главе 8 рассматриваются современные тенденции в этой области и вводится понятие систологического инжиниринга, как одного из подходов к семиотическому моделированию предметной области.
Языки семиотического моделирования [Осипов, 1988; Поспелов, 1986] как естественное развитие языков ситуационного управления являются, как нам кажется, первым приближением к языку инженерии знаний. Именно изменчивость и условность знаков делают семиотическую модель применимой к сложным сферам реальной человеческой деятельности. Поэтому главное на стадии концептуализации — сохранение естественной структуры поля знаний, а не выразительные возможности языка.
Традиционно семиотика включает (рис. 3.1):
• синтаксис (совокупность правил построения языка или отношения между знаками);
• семантику (связь между элементами языка и их значениями или отношения между знаками и реальностью);
• прагматику (отношения между знаками и их пользователями).
Рис. 3.1. Структура семиотики
- Т. А. Гаврилова в. Ф. Хорошевский
- Санкт-Петербург
- Предисловие
- Об авторах
- 1.1.2. Зарождение нейрокибернетики
- 1.1.3. От кибернетики «черного ящика» к ии
- 1.1.4. История искусственного интеллекта в России
- 1.2. Основные направления исследований в области искусственного интеллекта
- 1.2.1. Представление знаний и разработка систем, основанных на знаниях (knowledge-based
- 1.2.2. Программное обеспечение систем
- 1.2.3. Разработка естественно-языковых интерфейсов и машинный перевод (natural
- 1.2.4. Интеллектуальные роботы (robotics)
- 1.2.5. Обучение и самообучение (machine
- 1.2.6. Распознавание образов (pattern
- 1.2.7. Новые архитектуры компьютеров (new
- 1.2.8. Игры и машинное творчество
- 1.2.9. Другие направления
- 1.3. Представление знаний и вывод на знаниях
- 1.3.1. Данные и знания
- 1.3.2. Модели представления знаний
- Структура фрейма
- 1.3.3. Вывод на знаниях
- 1.4. Нечеткие знания
- 1.4.1. Основы теории нечетких множеств
- 1.4.2. Операции с нечеткими знаниями
- 1.5. Прикладные интеллектуальные системы
- 2.2. Классификация систем, основанных на знаниях
- 2.2.1. Классификация по решаемой задаче
- 2.2.2. Классификация по связи с реальным временем
- 2.2.3. Классификация по типу эвм
- 2.2.4. Классификация по степени интеграции с другими программами
- 2.3. Коллектив разработчиков
- 2.4. Технология проектирования и разработки
- 2.4.1. Проблемы разработки промышленных эс
- 2.4.2. Выбор подходящей проблемы
- 2.4.3. Технология быстрого прототипирования
- 2.4.4. Развитие прототипа до промышленной эс
- 2.4.5. Оценка системы
- 2.4.6. Стыковка системы
- 2.4.7. Поддержка системы
- Теоретические аспекты инженерии знаний
- 3.1. Поле знаний
- 3.1.1. О языке описания поля знаний
- 3.1.2. Семиотическая модель поля знаний
- 3.1.3. «Пирамида» знаний
- 3.2. Стратегии получения знаний
- 3.3. Теоретические аспекты извлечения знаний
- 3.3.1. Психологический аспект
- 3.3.2. Лингвистический аспект
- 3.3.3. Гносеологический аспект извлечения знаний
- 3.4. Теоретические аспекты структурирования знаний
- 3.4.1. Историческая справка
- 3.4.2. Иерархический подход
- 3.4.3. Традиционные методологии структурирования
- 3.4.4. Объектно-структурный подход (осп)
- Технологии инженерии знаний
- 4.1. Классификация методов практического извлечения знаний
- 4.2. Коммуникативные методы
- 4.2.1. Пассивные методы
- Сравнительные характеристики пассивных методов извлечения знаний
- 4.2.2. Активные индивидуальные методы
- Сравнительные характеристики активных индивидуальных методов извлечения
- 4.2.3. Активные групповые методы
- 4.3. Текстологические методы
- 4.4. Простейшие методы структурирования
- 4.4.1. Алгоритм для «чайников»
- 4.4.2. Специальные методы структурирования
- 4.5. Состояние и перспективы автоматизированного приобретения знаний
- 4.5.1. Эволюция систем приобретения знаний
- 4.5.2. Современное состояние автоматизированных систем приобретения знаний
- 4.6.2. Имитация консультаций
- 4.6.3. Интегрированные среды приобретения знаний
- 4.6.4. Приобретение знаний из текстов
- 4.6.5. Инструментарий прямого приобретения
- Формы сообщений
- 5.1.1. Семантические пространства и психологическое шкалирование
- 5.1.2. Методы многомерного шкалирования
- 5.1.3. Использование метафор для выявления «скрытых» структур знаний
- 5.2. Метод репертуарных решеток
- 5.2.1. Основные понятия
- 5.2.2. Методы выявления конструктов
- 5.2.3. Анализ репертуарных решеток
- 5.2.4. Автоматизированные методы
- 5.3. Управление знаниями
- 5.3.1. Что такое «управление знаниями»
- 5.3.2. Управление знаниям и корпоративная память
- 5.3.3. Системы omis
- 5.3.4. Особенности разработки omis
- 5.4. Визуальное проектирование баз знаний как инструмент познания
- 5.4.1. От понятийных карт к семантическим сетям
- 5.4.2. База знаний как познавательный инструмент
- 5.5. Проектирование гипермедиа бд и адаптивных обучающих систем
- 5.5.1. Гипертекстовые системы
- 5.5.2. От мультимедиа к гипермедиа
- 5.5.3. На пути к адаптивным обучающим системам
- 6.1.3. Инструментальные средства поддержки разработки систем по
- 6.2. Методологии создания и модели жизненного цикла интеллектуальных систем
- 6.3. Языки программирования для ии и языки представления знаний
- 6.4. Инструментальные пакеты для ии
- 6.5. WorkBench-системы
- Пример разработки системы, основанной на знаниях
- 7.1. Продукционно-фреймовый япз pilot/2
- 7.1.1. Структура пилот-программ и управление выводом
- 7.1.2. Декларативное представление данных и знаний
- 7.1.3. Процедурные средства языка
- 7.2. Психодиагностика — пример предметной области для построения экспертных систем
- 7.2.1. Особенности предметной области
- 7.2.2. Батарея психодиагностических эс «Ориентир»
- 7.3. Разработка и реализация психодиагностической эс «Cattell»
- 7.3.1. Архитектура системы и ее база знаний
- 7.3.2. Общение с пользователем и опрос испытуемых
- 7.3.3. Вывод портретов и генерация их текстовых представлений
- 7.3.4. Помощь и объяснения в эс «Cattell»
- 8.1.2. Html — язык гипертекстовой разметки Интернет-документов
- 8.1.3. Возможности представления знаний на базе языка html
- 8.2. Онтологии и онтологические системы
- 8.2.1. Основные определения
- 8.2.2. Модели онтологии и онтологической системы
- 8.2.3. Методологии создания и «жизненный цикл» онтологии
- Фрагмент описания аксиомы
- 8.2.4. Примеры онтологии
- 8.3. Системы и средства представления онтологических знаний
- 8.8.1. Основные подходы
- 8.3.2. Инициатива (ка)2 и инструментарий Ontobroker
- 8.3.3. Проект shoe — спецификация онтологии и инструментарий
- 8.3.4. Другие подходы и тенденции
- 9.1.2. Основные понятия
- 9.2.2. Инструментарий AgentBuilder
- 9.2.3. Система Bee-gent
- 9.3. Информационный поиск в среде Интернет
- 9.3.1. Машины поиска
- 9.3.2. Неспециализированные и специализированные поисковые агенты
- 9.3.3. Системы интеллектуальных поисковых агентов
- Заключение
- Литература
- Содержание
- Базы знаний интеллектуальных систем
- 196105, Санкт-Петербург, ул. Благодатная, 67.
- 197110, Санкт-Петербург, Чкаловский пр., 15.