Байесовская теория решений. Случай двух классов. Классификаторы, разделяющие функции и поверхности решений. Вероятности ошибок. Разделяющие функции для случая нормальной плотности.
Говоря о статистических методах распознавания, мы предполагаем установление связи между отнесением объекта к тому или иному классу (образу) и вероятностью ошибки при решении этой задачи. В ряде случаев это сводится к определению апостериорной вероятности принадлежности объекта образу при условии, что признаки этого объекта приняли значения. Начнём с байесовского решающего правила. По формуле Байеса
Здесь – априорная вероятность предъявления к распознаванию объекта-го образа:
.
для каждого
,
при признаках с непрерывной шкалой измерений
,
при признаках с дискретной шкалой измерений
.
При непрерывных значениях признаков представляет из себя функцию плотности вероятностей, при дискретных – распределение вероятностей.
Распределения, описывающие разные классы, как правило, "пересекаются", то есть имеются такие значения признаков , при которых
.
В таких случаях ошибки распознавания неизбежны. Естественно, неинтересны случаи, когда эти классы (образы) в выбранной системе признаков неразличимы (при равных априорных вероятностях решения можно выбирать случайным отнесением объекта к одному из классов равновероятным образом).
В общем случае нужно стремиться выбрать решающие правила так, чтобы минимизировать риск потерь при распознавании.
Риск потерь определяется двумя компонентами: вероятностью ошибок распознавания и величиной "штрафа" за эти ошибки (потерями). Матрица ошибок распознавания:
,
где – вероятность правильного распознавания;
–вероятность ошибочного отнесения объекта -го образа к-му ().
Матрица потерь
,
где – "премия" за правильное распознавание;
–"штраф" за ошибочное отнесение объекта -го образа к-му ().
Необходимо построить решающее правило так, чтобы обеспечить минимум математического ожидания потерь (минимум среднего риска). Такое правило называется байесовским.
Разобьём признаковое пространство нанепересекающихся областей, каждая из которых соответствует определённому образу.
Средний риск при попадании реализаций -го образа в области других образов равен
, .
Здесь предполагается, что все компоненты имеют непрерывную шкалу измерений (в данном случае это непринципиально).
Величину можно назвать условным средним риском (при условии, что совершена ошибка при распознавании объекта-го образа). Общий (безусловный) средний риск определяется величиной
Решающие правила (способы разбиения на) образуют множество. Наилучшим (байесовским) решающим правилом является то, которое обеспечивает минимальный средний риск, где– средний риск при применении одного из решающих правил, входящих в.
Рассмотрим упрощённый случай. Пусть , а(). В таком случае байесовское решающее правило обеспечивает минимум вероятности (среднего количества) ошибок распознавания. Пусть. Вероятность ошибки первого рода (объект 1-го образа отнесён ко второму образу)
,
где – вероятность ошибки второго рода
.
Средние ошибки
.
Так как
, то
и
.
ясно, что минимум будет иметь минимум в том случае, если подынтегральное выражение в областибудет строго отрицательным, то есть в. В областидолжно выполняться противоположное неравенство. Это и есть байесовское решающее правило для рассматриваемого случая. Оно может быть записано иначе:; величина, рассматриваемая как функция от, называется правдоподобиемпри данном, а– отношением правдоподобия. Таким образом, байесовское решающее правило можно сформулировать как рекомендацию выбирать решениев случае, если отношение правдоподобия превышает определённое пороговое значение, не зависящее от наблюдаемого.
Без специального рассмотрения укажем, что если число распознаваемых классов больше двух (), решение в пользу класса (образа)принимается в области, в которой для всех.
После вычисления апостериорных вероятностей принадлежности неизвестного объекта с параметрами каждому из образов,, отрезок прямой длиной единица разбивают наинтервалов с длинами, численно равными, и каждому интервалу ставят в соответствие этот образ. Затем с помощью датчика случайных (псевдослучайных) чисел, равномерно распределённых на, генерируют число, определяют интервал, в который оно попало, и относят распознаваемый объект к тому образу, которому соответствует данный интервал. Понятно, что такое решающее правило не может быть лучше байесовского, но при больших значениях отношения правдоподобия ненамного ему уступает, а в реализации может оказаться достаточно простым (например, метод ближайшего соседа).
Байесовское решающее правило реализуется в компьютерах в основном двумя способами.
1. Прямое вычисление апостериорных вероятностей
,
где – вектор значений параметров распознаваемого объекта и выбор максимума. Решение принимается в пользу того образа, для которогомаксимально. Иными словами, байесовское решающее правило реализуется решением задачи.
Если пойти на дальнейшее обобщение и допустить наличие матрицы потерь общего вида, то условный риск можно определить по формуле ,. Здесь первый член определяет "поощрение" за правильное распознавание, а второй – "наказание" за ошибку. Байесовское решающее правило в данном случае состоит в решении задачи
2. "Топографическое" определение области , в которую попал векторзначений признаков, описывающих распознаваемый объект.
Такой подход используют в тех случаях, когда описание областей достаточно компактно, а процедура определения области, в которую попал, проста. Иными словами, данный подход естественно использовать, когда в вычислительном отношении он эффективнее (проще), чем прямое вычисление апостериорных вероятностей.
Рис. 19. Байесовское решающее правило для нормально распределённых признаков с равными ковариационными матрицами
Так, например (доказательство приводить не будем), если классов два, их априорные вероятности одинаковы, и– нормальные распределения с одинаковыми ковариационными матрицами (отличаются только векторами средних), то байесовская разделяющая граница – гиперплоскость. Запоминается она значениями коэффициентов линейного уравнения. При распознавании какого-либо объекта в уравнение подставляют значения признаковэтого объекта и по знаку (плюс или минус) получаемого решения относят объект кили(рис. 19).
Если у классов иковариационные матрицыине только одинаковы, но и диагональны, то байесовским решением является отнесение объекта к тому классу, евклидово расстояние до эталона которого минимально (рис. 20).
Рис. 20. Байесовское решающее правило для нормально распределённых признаков с равными диагональными ковариационными матрицами (элементы диагоналей одинаковы)
Таким образом, мы убеждаемся в том, что некоторые решающие правила, ранее рассмотренные нами как эмпирические (детерминированные, эвристические), имеют вполне чёткую статистическую трактовку. Более того, в ряде конкретных случаев они являются статистически оптимальными.
- «Обработка изображений и распознавание образов» Визильтер Юрий Валентинович Методическое пособие-2010
- Раздел 2. Распознавание образов. 165
- 1.1. Задачи и приложения машинного зрения. Примеры практических приложений.
- Уровни и методы машинного зрения
- Растровое изображение Изображение как двумерный массив данных
- Алгебраические операции над изображениями
- Физическая природа изображений
- Изображения различных диапазонов длин волн
- Изображения различной физической природы
- Тип пикселя
- Возможности и особенности системыPisoft
- Базовые средства просмотра и анализа изображений и видеопоследовательностей
- Алгебра изображений
- Геометрические преобразования изображений
- Устройства оцифровки и ввода изображений
- Линейки и матрицы, сканеры и камеры
- Геометрия изображения
- Цифровые и аналоговые устройства
- Пространственное разрешение
- Программное обеспечение
- Обработка цветных изображений
- Цветовая модельRgb
- Цветовая модель hsv
- Цветовая модель yuv
- Цветовая сегментация изображения
- Гистограмма и гистограммная обработка изображений
- Профиль вдоль линии и анализ профиля
- Проекция и анализ проекции
- Бинаризация полутоновых изображений
- Сегментация многомодальных изображений
- Выделение и описание областей
- Выделение связных областей на бинарных изображениях
- 1. Отслеживающие алгоритмы на примере алгоритма обхода контура.
- 2. Сканируюющие алгоритмы.
- 1.3. Фильтрация. Выделение объектов при помощи фильтров
- Оконная фильтрация изображений в пространственной области
- Фильтрация бинарных изображений Модель шума «соль и перец»
- Структура оконного фильтра
- Логическая фильтрация помех
- Бинарная медианная фильтрация
- Бинарная ранговая фильтрация
- Взвешенные ранговые фильтры
- Анизотропная фильтрация
- Расширение-сжатие (простая морфология)
- Стирание бахромы
- Нелинейная фильтрация полутоновых изображений
- Ранговая оконная фильтрация
- Минимаксная фильтрация
- Задача выделения объектов интереса
- Бинарные фильтры для выделения объектов
- Метод нормализации фона
- Скользящее среднее в окне
- Гауссовская фильтрация
- Преобразование Фурье. Линейная фильтрация в частотной области
- Преобразование Фурье
- Комплексное представление преобразования Фурье
- Быстрое преобразование Фурье
- Двумерное преобразование Фурье
- Свертка с использованием преобразования Фурье
- Фильтрация изображений в частотной области
- Вейвлет-анализ
- Пирамида изображений
- Вейвлет-преобразование
- Операторы вычисления производных
- Операторы вычисления векторов градиентов
- Операторы Марра и Лапласа
- Постобработка контурного изображения Локализация края
- Утончение контура
- Сегментация полутоновых изображений
- Пороговая и мультипороговая сегментация
- Методы слияния, разбиения и слияния/разбиения областей
- Способы описания выделенных областей
- Текстурные признаки
- 1.6.Морфологические методы анализа сцен (по ю.П. Пытьеву) Методы обнаружения объектов, заданных эталонами
- Согласованная фильтрация.
- Корреляционное обнаружение.
- Морфологический подход ю.П. Пытьева.
- Форма изображения как инвариант преобразований изображений, отвечающих вариациям условий регистрации
- Сравнение изображений по форме
- Выделение отличий изображений по форме
- Обнаружение объекта по его изображению и оценка его координат
- *Морфология на базе кусочно-линейной интерполяции
- Преобразование Хафа для поиска прямых
- *Различные способы параметризации прямых
- Преобразование Хафа для поиска окружностей
- Анализ аккумулятора при поиске геометрических примитивов
- Обобщенное преобразование Хафа
- *Специализированная процедура голосования для поиска эллипсов
- *Рекуррентное преобразование Хафа в скользящем окне
- 1.8.Математическая морфология (по ж. Серра)
- Морфологические операции на бинарных изображениях
- Морфологические операции на полутоновых изображениях
- Морфологическое выделение «черт» и объектов
- Морфологический спектр
- Морфологические скелеты. Непрерывная бинарная морфология Непрерывная бинарная морфология
- Непрерывное гранично-скелетное представление изображения
- Обработка и использование скелета
- *Обобщенные скелетные представления бинарных фигур
- Алгоритмы утончения дискретного бинарного изображения
- *Регуляризация скелетов
- Типы нерегулярностей скелета
- Устранение нерегулярностей
- Регуляризация скелета по Тихонову
- *Селективные морфологии
- 1.9. Анализ движения. Выделение движущихся объектов. Разность кадров. Вычитание фона. Анализ оптических потоков. Слежение за движущимися объектами. Корреляционное слежение.
- Обучение с учителем. Детерминированные методы, основанные на «близости». Линейные решающие правила. Метод построения эталонов. Метод ближайшего соседа. Методkближайших соседей.
- Линейные решающие правила
- Метод построения эталонов
- Методы ближайших соседей
- Параметрические и непараметрические методы
- Дискриминантные и моделирующие методы обучения
- Способность распознавателя к обобщению. Регуляризация.
- Байесовская теория решений. Случай двух классов. Классификаторы, разделяющие функции и поверхности решений. Вероятности ошибок. Разделяющие функции для случая нормальной плотности.
- Дискриминантный анализ. Линейный дискриминант Фишера. Персептронная функция критерия. Линейный дискриминантный анализ (lda,дискриминант Фишера)
- Персептрон Розенблатта
- Анализ свидетельств
- Байесовское объединение свидетельств
- Структурное распознавание
- Автоматизированное конструирование алгоритмов обнаружения объектов на основе преобразований модельных описаний объектов.
- Нейросетевое распознавание
- Нейронные сети ассоциативной памяти. Сети Хопфилда.
- Многослойные персептроны. Оптимизационное обучение. Метод обратного распространения ошибки.
- Многослойные персептроны. Правило Хебба.
- *Связь с байесовским распознаванием
- Сети встречного распространения. Самоорганизующиеся сети.