1.9. Анализ движения. Выделение движущихся объектов. Разность кадров. Вычитание фона. Анализ оптических потоков. Слежение за движущимися объектами. Корреляционное слежение.
СЖАТИЕ ВИДЕОИНФОРМАЦИИ. СЖАТИЕ БЕЗ ПОТЕРЬ. СЖАТИЕ ДИНАМИЧЕСКИХ ВИДЕОПОСЛЕДОВАТЕЛЬНОСТЕЙ. СОВРЕМЕННЫЕ ФОРМАТЫ ХРАНЕНИЯ ЦИФРОВЫХ ИЗОБРАЖЕНИЙ И ВИДЕОПОСЛЕДОВАТЕЛЬНОСТЕЙ. СТАНДАРТ MPEG4.
Раздел 2. Распознавание образов.
2.1. Задача автоматического распознавания образов. Байесовская теория решений. Обучение с учителем. Линейные разделяющие функции и поверхности решений. Обучение без учителя. Кластерный анализ. Логическое программирование и экспертные системы (ЭС).Байесовское объединение свидетельств.
Задача автоматического распознавания образов. Краткая характеристика научной области. Распознавание, классификация, идентификация, верификация.
Распознавание(классификация, идентификация)-это отнесение конкретного объекта (реализации), представленного значениями его свойств (признаков), к одному из фиксированного перечня образов (классов) по определённому решающему правилу в соответствии с поставленной целью.Верификация– проверка, принадлежит ли данный объект некоторому заранее заданному классу.
Вспомогательная, но важная функция распознающих систем – оценка риска потерь. Без этой функции невозможно, например, построить оптимальные решающие правила, выбрать наиболее информативную систему признаков, которые используются при распознавании, и др.
Введём следующие обозначения:
S– множество распознаваемых образов (классов), называемое иногда алфавитом;
X– признаковое (выборочное) пространство;
– размерность признакового пространства (количество признаков, характеризующих распознаваемые объекты);
– множество решающих правил, по которым осуществляется отнесение распознаваемого объекта (реализации) к тому или иному образу;
– риск потерь при распознавании.
Размерность признакового пространства обычно стремятся сделать как можно меньше, поскольку при этом сокращается количество требуемых измерений, упрощаются вычисления, формирующие и реализующие решающие правила, повышается статистическая устойчивость результатов распознавания. Вместе с тем уменьшение, вообще говоря, ведёт к росту риска потерь. Поэтому формирование признакового пространства является компромиссной задачей, которую можно разделить на две части: формирование исходного признакового пространства и минимизация размерности этого пространства.
Риск потерь фактически является критерием, по которому формируется наиболее информативное признаковое пространство и наиболее эффективные решающие правила. И алфавит, и признаки, и решающие правила должны быть такими, чтобы по возможности минимизировать риск потерь. Этот критерий является составным. В него в общем случае входят потери (штрафы) за ошибки распознавания и затраты на измерения признаков распознаваемых объектов. В частном, наиболее широко используемом случае в качестве риска потерь фигурирует средняя вероятность ошибки распознавания или максимальная компонента матрицы вероятностей ошибок. На практике, конечно, речь идёт не о вероятностях, а об их выборочных оценках.
Пространство признаковможно представить как некоторое пространство размерностис определённой в этом пространстве метрикой. Любой объект (реализация) представляется в виде точки (вектора) в этом пространстве. Проекция этой точки наю ось координат соответствует значениюго признака. Любое решающее правило в конечном счете задает разбиение признакового пространства на непересекающиеся области, соответствующие различным классам.
- «Обработка изображений и распознавание образов» Визильтер Юрий Валентинович Методическое пособие-2010
- Раздел 2. Распознавание образов. 165
- 1.1. Задачи и приложения машинного зрения. Примеры практических приложений.
- Уровни и методы машинного зрения
- Растровое изображение Изображение как двумерный массив данных
- Алгебраические операции над изображениями
- Физическая природа изображений
- Изображения различных диапазонов длин волн
- Изображения различной физической природы
- Тип пикселя
- Возможности и особенности системыPisoft
- Базовые средства просмотра и анализа изображений и видеопоследовательностей
- Алгебра изображений
- Геометрические преобразования изображений
- Устройства оцифровки и ввода изображений
- Линейки и матрицы, сканеры и камеры
- Геометрия изображения
- Цифровые и аналоговые устройства
- Пространственное разрешение
- Программное обеспечение
- Обработка цветных изображений
- Цветовая модельRgb
- Цветовая модель hsv
- Цветовая модель yuv
- Цветовая сегментация изображения
- Гистограмма и гистограммная обработка изображений
- Профиль вдоль линии и анализ профиля
- Проекция и анализ проекции
- Бинаризация полутоновых изображений
- Сегментация многомодальных изображений
- Выделение и описание областей
- Выделение связных областей на бинарных изображениях
- 1. Отслеживающие алгоритмы на примере алгоритма обхода контура.
- 2. Сканируюющие алгоритмы.
- 1.3. Фильтрация. Выделение объектов при помощи фильтров
- Оконная фильтрация изображений в пространственной области
- Фильтрация бинарных изображений Модель шума «соль и перец»
- Структура оконного фильтра
- Логическая фильтрация помех
- Бинарная медианная фильтрация
- Бинарная ранговая фильтрация
- Взвешенные ранговые фильтры
- Анизотропная фильтрация
- Расширение-сжатие (простая морфология)
- Стирание бахромы
- Нелинейная фильтрация полутоновых изображений
- Ранговая оконная фильтрация
- Минимаксная фильтрация
- Задача выделения объектов интереса
- Бинарные фильтры для выделения объектов
- Метод нормализации фона
- Скользящее среднее в окне
- Гауссовская фильтрация
- Преобразование Фурье. Линейная фильтрация в частотной области
- Преобразование Фурье
- Комплексное представление преобразования Фурье
- Быстрое преобразование Фурье
- Двумерное преобразование Фурье
- Свертка с использованием преобразования Фурье
- Фильтрация изображений в частотной области
- Вейвлет-анализ
- Пирамида изображений
- Вейвлет-преобразование
- Операторы вычисления производных
- Операторы вычисления векторов градиентов
- Операторы Марра и Лапласа
- Постобработка контурного изображения Локализация края
- Утончение контура
- Сегментация полутоновых изображений
- Пороговая и мультипороговая сегментация
- Методы слияния, разбиения и слияния/разбиения областей
- Способы описания выделенных областей
- Текстурные признаки
- 1.6.Морфологические методы анализа сцен (по ю.П. Пытьеву) Методы обнаружения объектов, заданных эталонами
- Согласованная фильтрация.
- Корреляционное обнаружение.
- Морфологический подход ю.П. Пытьева.
- Форма изображения как инвариант преобразований изображений, отвечающих вариациям условий регистрации
- Сравнение изображений по форме
- Выделение отличий изображений по форме
- Обнаружение объекта по его изображению и оценка его координат
- *Морфология на базе кусочно-линейной интерполяции
- Преобразование Хафа для поиска прямых
- *Различные способы параметризации прямых
- Преобразование Хафа для поиска окружностей
- Анализ аккумулятора при поиске геометрических примитивов
- Обобщенное преобразование Хафа
- *Специализированная процедура голосования для поиска эллипсов
- *Рекуррентное преобразование Хафа в скользящем окне
- 1.8.Математическая морфология (по ж. Серра)
- Морфологические операции на бинарных изображениях
- Морфологические операции на полутоновых изображениях
- Морфологическое выделение «черт» и объектов
- Морфологический спектр
- Морфологические скелеты. Непрерывная бинарная морфология Непрерывная бинарная морфология
- Непрерывное гранично-скелетное представление изображения
- Обработка и использование скелета
- *Обобщенные скелетные представления бинарных фигур
- Алгоритмы утончения дискретного бинарного изображения
- *Регуляризация скелетов
- Типы нерегулярностей скелета
- Устранение нерегулярностей
- Регуляризация скелета по Тихонову
- *Селективные морфологии
- 1.9. Анализ движения. Выделение движущихся объектов. Разность кадров. Вычитание фона. Анализ оптических потоков. Слежение за движущимися объектами. Корреляционное слежение.
- Обучение с учителем. Детерминированные методы, основанные на «близости». Линейные решающие правила. Метод построения эталонов. Метод ближайшего соседа. Методkближайших соседей.
- Линейные решающие правила
- Метод построения эталонов
- Методы ближайших соседей
- Параметрические и непараметрические методы
- Дискриминантные и моделирующие методы обучения
- Способность распознавателя к обобщению. Регуляризация.
- Байесовская теория решений. Случай двух классов. Классификаторы, разделяющие функции и поверхности решений. Вероятности ошибок. Разделяющие функции для случая нормальной плотности.
- Дискриминантный анализ. Линейный дискриминант Фишера. Персептронная функция критерия. Линейный дискриминантный анализ (lda,дискриминант Фишера)
- Персептрон Розенблатта
- Анализ свидетельств
- Байесовское объединение свидетельств
- Структурное распознавание
- Автоматизированное конструирование алгоритмов обнаружения объектов на основе преобразований модельных описаний объектов.
- Нейросетевое распознавание
- Нейронные сети ассоциативной памяти. Сети Хопфилда.
- Многослойные персептроны. Оптимизационное обучение. Метод обратного распространения ошибки.
- Многослойные персептроны. Правило Хебба.
- *Связь с байесовским распознаванием
- Сети встречного распространения. Самоорганизующиеся сети.