Взвешенные ранговые фильтры
Как уже говорилось выше, использование процентильных фильтров для подавления помех основано на предположении о том, что объекты (однородные области) на исходном изображении настолько велики, что число положений апертуры , в которых она целиком (всеми пикселями) попадает на объект или также целиком на фон, намного больше числа «переходных состояний» (рис. 3.2.29).
@Рис. 3.2.29. Положение фильтра относительно объекта
@Рис. 3.2.30. «Переходные состояния» фильтра на сцене вида «шахматная доска» (Положение фильтра относительно объекта)
Если это предположение не выполняется (например, сцена имеет вид «шахматной доски» (рис.3.2.30), то процентильная фильтрация приведёт лишь к усилению помех (увеличению числа ошибок на сцене). Это связано с тем, что, подсчитывая число единиц и нулей в апертуре, мы как бы заранее предполагаем, что на исходной сцене (в не искажённом состоянии) все соседние пиксели в подавляющем большинстве случаев имели одинаковые значения. И поэтому число единиц воспринимается как число свидетельств в пользу предположения, что базовый пиксель до зашумления имел значение 1, а число нулей – как число свидетельств, что его значение было 0. Пусть однако нам известен только минимальный размер объектов и минимальное расстояние между ними. Повысить устойчивость фильтрации можно, придав более близким точкам окрестности большее влияние на окончательный результат, чем дальним. Это можно осуществить при помощиматрицы весов. При этом значения каждого пикселя апертурыпри подсчете модифицированного числа единицумножается на определенный вес:
,
где – весовые коэффициенты элементов апертуры (целые числа).
Модифицированный размер апертуры для взвешенного фильтра теперь имеет вид:
.
ППР для взвешенного процентильного фильтра практически эквивалентно прежнему с учетом новых значенийи.Приведем два возможных примера весовых матриц (3.2.1) и (3.2.2).
(3.2.1)
. (3.2.2)
(3.2.1) реализует описанный выше принцип «штрафа за удаление». Общий размер апертуры в этом случае равен . (3.2.2) является весовой матрицей типа «маска» (матрица весов состоит из нулей и единиц). Данная маска спозволяет фильтровать даже сцены типа «шахматная доска» (см. рис. 3.2.30).
- «Обработка изображений и распознавание образов» Визильтер Юрий Валентинович Методическое пособие-2010
- Раздел 2. Распознавание образов. 165
- 1.1. Задачи и приложения машинного зрения. Примеры практических приложений.
- Уровни и методы машинного зрения
- Растровое изображение Изображение как двумерный массив данных
- Алгебраические операции над изображениями
- Физическая природа изображений
- Изображения различных диапазонов длин волн
- Изображения различной физической природы
- Тип пикселя
- Возможности и особенности системыPisoft
- Базовые средства просмотра и анализа изображений и видеопоследовательностей
- Алгебра изображений
- Геометрические преобразования изображений
- Устройства оцифровки и ввода изображений
- Линейки и матрицы, сканеры и камеры
- Геометрия изображения
- Цифровые и аналоговые устройства
- Пространственное разрешение
- Программное обеспечение
- Обработка цветных изображений
- Цветовая модельRgb
- Цветовая модель hsv
- Цветовая модель yuv
- Цветовая сегментация изображения
- Гистограмма и гистограммная обработка изображений
- Профиль вдоль линии и анализ профиля
- Проекция и анализ проекции
- Бинаризация полутоновых изображений
- Сегментация многомодальных изображений
- Выделение и описание областей
- Выделение связных областей на бинарных изображениях
- 1. Отслеживающие алгоритмы на примере алгоритма обхода контура.
- 2. Сканируюющие алгоритмы.
- 1.3. Фильтрация. Выделение объектов при помощи фильтров
- Оконная фильтрация изображений в пространственной области
- Фильтрация бинарных изображений Модель шума «соль и перец»
- Структура оконного фильтра
- Логическая фильтрация помех
- Бинарная медианная фильтрация
- Бинарная ранговая фильтрация
- Взвешенные ранговые фильтры
- Анизотропная фильтрация
- Расширение-сжатие (простая морфология)
- Стирание бахромы
- Нелинейная фильтрация полутоновых изображений
- Ранговая оконная фильтрация
- Минимаксная фильтрация
- Задача выделения объектов интереса
- Бинарные фильтры для выделения объектов
- Метод нормализации фона
- Скользящее среднее в окне
- Гауссовская фильтрация
- Преобразование Фурье. Линейная фильтрация в частотной области
- Преобразование Фурье
- Комплексное представление преобразования Фурье
- Быстрое преобразование Фурье
- Двумерное преобразование Фурье
- Свертка с использованием преобразования Фурье
- Фильтрация изображений в частотной области
- Вейвлет-анализ
- Пирамида изображений
- Вейвлет-преобразование
- Операторы вычисления производных
- Операторы вычисления векторов градиентов
- Операторы Марра и Лапласа
- Постобработка контурного изображения Локализация края
- Утончение контура
- Сегментация полутоновых изображений
- Пороговая и мультипороговая сегментация
- Методы слияния, разбиения и слияния/разбиения областей
- Способы описания выделенных областей
- Текстурные признаки
- 1.6.Морфологические методы анализа сцен (по ю.П. Пытьеву) Методы обнаружения объектов, заданных эталонами
- Согласованная фильтрация.
- Корреляционное обнаружение.
- Морфологический подход ю.П. Пытьева.
- Форма изображения как инвариант преобразований изображений, отвечающих вариациям условий регистрации
- Сравнение изображений по форме
- Выделение отличий изображений по форме
- Обнаружение объекта по его изображению и оценка его координат
- *Морфология на базе кусочно-линейной интерполяции
- Преобразование Хафа для поиска прямых
- *Различные способы параметризации прямых
- Преобразование Хафа для поиска окружностей
- Анализ аккумулятора при поиске геометрических примитивов
- Обобщенное преобразование Хафа
- *Специализированная процедура голосования для поиска эллипсов
- *Рекуррентное преобразование Хафа в скользящем окне
- 1.8.Математическая морфология (по ж. Серра)
- Морфологические операции на бинарных изображениях
- Морфологические операции на полутоновых изображениях
- Морфологическое выделение «черт» и объектов
- Морфологический спектр
- Морфологические скелеты. Непрерывная бинарная морфология Непрерывная бинарная морфология
- Непрерывное гранично-скелетное представление изображения
- Обработка и использование скелета
- *Обобщенные скелетные представления бинарных фигур
- Алгоритмы утончения дискретного бинарного изображения
- *Регуляризация скелетов
- Типы нерегулярностей скелета
- Устранение нерегулярностей
- Регуляризация скелета по Тихонову
- *Селективные морфологии
- 1.9. Анализ движения. Выделение движущихся объектов. Разность кадров. Вычитание фона. Анализ оптических потоков. Слежение за движущимися объектами. Корреляционное слежение.
- Обучение с учителем. Детерминированные методы, основанные на «близости». Линейные решающие правила. Метод построения эталонов. Метод ближайшего соседа. Методkближайших соседей.
- Линейные решающие правила
- Метод построения эталонов
- Методы ближайших соседей
- Параметрические и непараметрические методы
- Дискриминантные и моделирующие методы обучения
- Способность распознавателя к обобщению. Регуляризация.
- Байесовская теория решений. Случай двух классов. Классификаторы, разделяющие функции и поверхности решений. Вероятности ошибок. Разделяющие функции для случая нормальной плотности.
- Дискриминантный анализ. Линейный дискриминант Фишера. Персептронная функция критерия. Линейный дискриминантный анализ (lda,дискриминант Фишера)
- Персептрон Розенблатта
- Анализ свидетельств
- Байесовское объединение свидетельств
- Структурное распознавание
- Автоматизированное конструирование алгоритмов обнаружения объектов на основе преобразований модельных описаний объектов.
- Нейросетевое распознавание
- Нейронные сети ассоциативной памяти. Сети Хопфилда.
- Многослойные персептроны. Оптимизационное обучение. Метод обратного распространения ошибки.
- Многослойные персептроны. Правило Хебба.
- *Связь с байесовским распознаванием
- Сети встречного распространения. Самоорганизующиеся сети.