Уровни и методы машинного зрения
На протяжении десяти-пятнадцати последних лет в алгоритмическом аспекте последовательность действий по обработке изображения принято рассматривать в согласии с, так называемой модульной парадигмой [30]. Эта парадигма, предложенная Д. Марром на основе длительного изучения механизмов зрительного восприятия человека, утверждает, что обработка изображений должна опираться на несколько последовательных уровней восходящей информационной линии: от «иконического» представления объектов (растровое изображение, неструктурированная информация) – к их символическому представлению (векторные и атрибутивные данные в структурированной форме, реляционные структуры и т.п.). Исходя из этого, в области машинного зрения принято выделять следующие основные этапы обработки данных:
предобработка изображений;
сегментация;
выделение геометрической структуры;
определение относительной структуры и семантики.
Связанные с этими этапами уровни обработки обычно называются соответственно: обработка нижнего уровня, среднего уровня, высокого уровня. В то время как алгоритмы обработки нижнего уровня (фильтрация простых шумов, гистограммная обработка) могут рассматриваться как хорошо проработанные и детально изученные, алгоритмы среднего уровня (сегментация) продолжают сегодня оставаться центральным полем приложения инженерных и исследовательских усилий. За последние годы значительный прогресс был достигнут по отношению к проблемам сопоставления точек и фрагментов изображений (matching) [176], [242], выделения признаков внутри малых фрагментов [172], [215] [226], высокой точности 3D-позиционирования точек [175], [178], что подразумевает соответствующее моделирование и калибровку датчиков и их комбинаций, выделение простых яркостно-геометрических структур типа «точка», «край», «пятно», «прямая линия», «угол» [135], [136], [204], [215], [238].
Методы обработки высокого уровня, относящиеся собственно к «пониманию изображений», по-прежнему представляют собой «вызов» для сообщества исследователей в области компьютерного зрения и искусственного интеллекта. Безусловно, перспектива создания будущих поколений «интеллектуальных машин» в основном зависит от дальнейшей разработки именно этого круга алгоритмов.
В настоящее время известно несколько основных алгоритмических подходов и математических формализмов, используемых при разработке практических систем анализа изображений. Это гистограммные преобразования, анализ проекций, линейная и нелинейная фильтрация изображений, яркостная и текстурная сегментация, корреляционное обнаружение и согласованная фильтрация, морфологический подход Ю.П. Пытьева, математическая морфология Серра, метод «нормализации фона», преобразование Хафа, структурно-лингвистический подход и ряд других. Большинство этих методов будут рассмотрены в данной книге.
Значительный вклад в разработку методов и алгоритмов обработки изображений и машинного зрения внесли работы М.П.Ярославского, П.А.Бакута, В.К.Злобина, В.К.Баклицкого, В.Г.Лабунца, В.Л.Левшина, Ю.П.Пытьева, Серра, Р.Харалика, Е.Дэвиса, У.Гренандера, К.Ту и многие другие. За последние десятилетия создано множество успешных систем машинного зрения, в которых в тех или иных сочетаниях реализованы упомянутые подходы и парадигмы. Однако единого математического формализма и единой общепризнанной методики разработки алгоритмов анализа изображений по-прежнему не существует, и, следовательно, наука об обработке изображений все еще находится в развитии, переживая период роста, чреватый возможностью появления в любой момент новых самых неожиданных и революционных методик и теорий.
- «Обработка изображений и распознавание образов» Визильтер Юрий Валентинович Методическое пособие-2010
- Раздел 2. Распознавание образов. 165
- 1.1. Задачи и приложения машинного зрения. Примеры практических приложений.
- Уровни и методы машинного зрения
- Растровое изображение Изображение как двумерный массив данных
- Алгебраические операции над изображениями
- Физическая природа изображений
- Изображения различных диапазонов длин волн
- Изображения различной физической природы
- Тип пикселя
- Возможности и особенности системыPisoft
- Базовые средства просмотра и анализа изображений и видеопоследовательностей
- Алгебра изображений
- Геометрические преобразования изображений
- Устройства оцифровки и ввода изображений
- Линейки и матрицы, сканеры и камеры
- Геометрия изображения
- Цифровые и аналоговые устройства
- Пространственное разрешение
- Программное обеспечение
- Обработка цветных изображений
- Цветовая модельRgb
- Цветовая модель hsv
- Цветовая модель yuv
- Цветовая сегментация изображения
- Гистограмма и гистограммная обработка изображений
- Профиль вдоль линии и анализ профиля
- Проекция и анализ проекции
- Бинаризация полутоновых изображений
- Сегментация многомодальных изображений
- Выделение и описание областей
- Выделение связных областей на бинарных изображениях
- 1. Отслеживающие алгоритмы на примере алгоритма обхода контура.
- 2. Сканируюющие алгоритмы.
- 1.3. Фильтрация. Выделение объектов при помощи фильтров
- Оконная фильтрация изображений в пространственной области
- Фильтрация бинарных изображений Модель шума «соль и перец»
- Структура оконного фильтра
- Логическая фильтрация помех
- Бинарная медианная фильтрация
- Бинарная ранговая фильтрация
- Взвешенные ранговые фильтры
- Анизотропная фильтрация
- Расширение-сжатие (простая морфология)
- Стирание бахромы
- Нелинейная фильтрация полутоновых изображений
- Ранговая оконная фильтрация
- Минимаксная фильтрация
- Задача выделения объектов интереса
- Бинарные фильтры для выделения объектов
- Метод нормализации фона
- Скользящее среднее в окне
- Гауссовская фильтрация
- Преобразование Фурье. Линейная фильтрация в частотной области
- Преобразование Фурье
- Комплексное представление преобразования Фурье
- Быстрое преобразование Фурье
- Двумерное преобразование Фурье
- Свертка с использованием преобразования Фурье
- Фильтрация изображений в частотной области
- Вейвлет-анализ
- Пирамида изображений
- Вейвлет-преобразование
- Операторы вычисления производных
- Операторы вычисления векторов градиентов
- Операторы Марра и Лапласа
- Постобработка контурного изображения Локализация края
- Утончение контура
- Сегментация полутоновых изображений
- Пороговая и мультипороговая сегментация
- Методы слияния, разбиения и слияния/разбиения областей
- Способы описания выделенных областей
- Текстурные признаки
- 1.6.Морфологические методы анализа сцен (по ю.П. Пытьеву) Методы обнаружения объектов, заданных эталонами
- Согласованная фильтрация.
- Корреляционное обнаружение.
- Морфологический подход ю.П. Пытьева.
- Форма изображения как инвариант преобразований изображений, отвечающих вариациям условий регистрации
- Сравнение изображений по форме
- Выделение отличий изображений по форме
- Обнаружение объекта по его изображению и оценка его координат
- *Морфология на базе кусочно-линейной интерполяции
- Преобразование Хафа для поиска прямых
- *Различные способы параметризации прямых
- Преобразование Хафа для поиска окружностей
- Анализ аккумулятора при поиске геометрических примитивов
- Обобщенное преобразование Хафа
- *Специализированная процедура голосования для поиска эллипсов
- *Рекуррентное преобразование Хафа в скользящем окне
- 1.8.Математическая морфология (по ж. Серра)
- Морфологические операции на бинарных изображениях
- Морфологические операции на полутоновых изображениях
- Морфологическое выделение «черт» и объектов
- Морфологический спектр
- Морфологические скелеты. Непрерывная бинарная морфология Непрерывная бинарная морфология
- Непрерывное гранично-скелетное представление изображения
- Обработка и использование скелета
- *Обобщенные скелетные представления бинарных фигур
- Алгоритмы утончения дискретного бинарного изображения
- *Регуляризация скелетов
- Типы нерегулярностей скелета
- Устранение нерегулярностей
- Регуляризация скелета по Тихонову
- *Селективные морфологии
- 1.9. Анализ движения. Выделение движущихся объектов. Разность кадров. Вычитание фона. Анализ оптических потоков. Слежение за движущимися объектами. Корреляционное слежение.
- Обучение с учителем. Детерминированные методы, основанные на «близости». Линейные решающие правила. Метод построения эталонов. Метод ближайшего соседа. Методkближайших соседей.
- Линейные решающие правила
- Метод построения эталонов
- Методы ближайших соседей
- Параметрические и непараметрические методы
- Дискриминантные и моделирующие методы обучения
- Способность распознавателя к обобщению. Регуляризация.
- Байесовская теория решений. Случай двух классов. Классификаторы, разделяющие функции и поверхности решений. Вероятности ошибок. Разделяющие функции для случая нормальной плотности.
- Дискриминантный анализ. Линейный дискриминант Фишера. Персептронная функция критерия. Линейный дискриминантный анализ (lda,дискриминант Фишера)
- Персептрон Розенблатта
- Анализ свидетельств
- Байесовское объединение свидетельств
- Структурное распознавание
- Автоматизированное конструирование алгоритмов обнаружения объектов на основе преобразований модельных описаний объектов.
- Нейросетевое распознавание
- Нейронные сети ассоциативной памяти. Сети Хопфилда.
- Многослойные персептроны. Оптимизационное обучение. Метод обратного распространения ошибки.
- Многослойные персептроны. Правило Хебба.
- *Связь с байесовским распознаванием
- Сети встречного распространения. Самоорганизующиеся сети.