logo
DEK

1. Економіко-математичні моделі. Предмет та об’єкт вивчення дисципліни. Основні підходи до класифікації економіко-математичних моделей.

Еконо́міко-математи́чні моде́лі — моделі економічних об'єктів або процесів, при описі яких використовуються математичні засоби.

Об’єктом дисципліни є економічна система на макро-, мезо- та мікро- рівнях управління з властивими для неї економічними законами. В центрі уваги знаходиться моделювання національного доходу, рівня цін, державного бюджету, інвестицій окремих видів бізнесу, фінансово-кредитних стосунків тощо.

Предметом дисципліни є методологія й методика вивчення, побудови і застосування математичних моделей для аналізу й прогнозу економічних процесів та систем. З позиції досліджуваного об’єкта модель повинна пояснити сутність процесів, які там відбуваються, дати можливість побудувати прогноз його розвитку, підказати можливості людей впливати на перебіг подій.

Для класифікації цих моделей використовують різні класифікаційні ознаки.

За цільовим призначенням економіко-математичні моделі поділяються на теоретико-аналітичні, що використовуються під час дослідження загальних властивостей і закономірностей економічних процесів, і прикладні, що застосовуються у розв’язанні конкретних економічних задач (моделі економічного аналізу, прогнозування, управління).

Відповідно до загальної класифікації математичних моделей вони поділяються на функціональні(модель поведінки споживачів в умовах товарно-грошових відносин) та структурні(моделі міжгалузевих зв’язків), а також проміжні форми (структурно-функціональні).

Моделі поділяють на дескриптивні та нормативні. Дескриптивні моделі відповідають на запитання: як це відбувається чи як це найімовірніше може розвиватися далі? Іншими словами, вони лише пояснюють факти, які спостерігалися, чи дають прогноз. Прикладом дескриптивних моделей є виробничі функції та функції купівельного попиту, побудовані на підставі опрацювання статистичних даних. Нормативні моделі відповідають на запитання: як це має бути? Тобто передбачають цілеспрямовану діяльність. Типовим прикладом нормативних моделей є моделі оптимального (раціонального) планування, що формалізують у той чи інший спосіб мету економічного розвитку, можливість і засоби її досягнення.

За характером відображення причинно-наслідкових аспектів розрізняють моделі жорстко детерміновані і моделі, що враховують випадковість і невизначеність. Треба розрізняти невизначеність, яка описується ймовірнісними законами, і невизначеність, для опису котрої закони теорії ймовірностей застосовувати не можна. Другий тип невизначеності набагато складніший для моделювання: мається на увазі теорія нечітких множин та нечітка логіка.

За способами відображення чинника часу економіко-математичні моделі поділяються на статичні й динамічні. У статичних моделях усі залежності відносять до одного моменту чи періоду часу. Динамічні моделі характеризують зміни економічних процесів у часі. За тривалістю розглянутого періоду розрізняють моделі короткотермінового (до року), середньотермінового (до 5 років), довготермінового (10—15 і більше років) прогнозування і планування. Час в економіко-математичних моделях може змінюватися неперервно або дискретно.

За формою математичних залежностей виділяють лінійні і нелінійні моделі. Лінійні моделі набули великого поширення завдяки зручності їх використання. Відмінності між лінійними і нелінійними моделями є суттєвими не лише з математичної точки зору, а й у теоретико-економічному відношенні, бо багато залежностей в економіці мають принципово нелінійний характер: ефективність використання ресурсів за зростання виробництва, зміни попиту і споживання населення, збільшення виробництва, зміни попиту населення зі зростанням доходів тощо.

За співвідношенням екзогенних і ендогенних змінних, які включаються в модель, вони поділяються на відкриті і закриті. Повністю відкритих моделей не існує; модель повинна містити хоча б одну ендогенну (таку, що визначається за допомогою моделі) змінну. Повністю закриті економіко-математичні моделі, тобто такі, що не містять екзогенних змінних, надзвичайно рідкісні; побудова їх потребує повного абстрагування від «середовища». Переважна більшість економіко-математичних моделей посідає проміжну позицію і розрізняється за ступенем відкритості (закритості).

Для моделей народногосподарського рівня важливим є поділ на агреговані та деталізовані. Залежно від того, містять народногосподарські моделі просторові чинники й умови чи не містять, розрізняють моделі просторові і точкові.

Класифікація видів математичних моделей може проводитися й за такими ознаками: аналітичне та комп’ютерне моделювання (рис. 2.3)

Для аналітичного моделювання характерним є те, що процеси функціонування елементів системи записують у вигляді деяких математичних співвідношень (алгебраїчних, інтегро-диференційних, кінцево-різницевих тощо) чи логічних умов.

Комп’ютерне моделювання характеризується тим, що математична модель системи подається у вигляді деякого алгоритму та програми, придатної для її реалізації на комп’ютері, що дозволяє проводити з нею обчислювальні експерименти. Залежно від математичного інструментарію (апарату), що використовується в побудові моделі можна виокремити три взаємопов’язані види моделювання:

Зазначимо, що все частіше (і це логічно) в економіці використовується комбіноване моделювання, системотвірним елементом якого є аналітичні моделі.