2.5. Бинарные отношения на множестве
Пусть R А А. Определим некоторые свойства, которыми может обладать или не обладать такое отношение:
рефлексивность: если a = b, то a R b;
иррефлексивность: если a R b, то a b;
симметричность: если a R b, то b R a;
антисимметричность: если a R b и b R a, то a = b;
транзитивность: если a R b и b R с, то a R с;
дихотомия: если a b, то либо a R b, либо b R a.
Следует выделить некоторые типы бинарных отношений, характеризуемые определенным набором свойств.
Отношение эквивалентности рефлексивно, симметрично и транзитивно. Примерами отношения эквивалентности являются равносильность формул, подобие геометрических фигур, принадлежность студентов к одной группе, принадлежность населенных пунктов к одному району и т. п.
Отношение эквивалентности делит множество на непересекающиеся подмножества – классы эквивалентности. С другой стороны, всякое разбиение множества М на непересекающиеся подмножества задает отношение эквивалентности на множестве М: любые два элемента, принадлежащие одному и тому же классу разбиения, эквивалентны, а элементы, принадлежащие различным классам, не являются эквивалентными. Множество всех классов эквивалентности образует фактор-множество множества М по R (обозначается M / R).
Отношение совместимости рефлексивно и симметрично. Примерами отношения совместимости являются близость чисел, знакомство людей и т. п.
Отношение нестрогого порядка рефлексивно, антисимметрично и транзитивно. Отношения (меньше или равно) и (больше или равно) для действительных чисел так же, как и для множеств являются отношениями нестрогого порядка.
Отношение строгого порядка иррефлексивно, антисимметрично и транзитивно. Отношениями строгого порядка являются (меньше) и (больше) для действительных чисел, а также и для множеств.
Множество М, на котором задано отношение порядка R (строгого или нестрогого), может быть полностью упорядоченным, если любые два элемента a и b из М находятся в отношении R, т. е. a R b или b R a. При этом говорят, что a и b сравнимы. Если М содержит хотя бы одну пару элементов с и d, для которых не имеет место ни c R d, ни d R c, то множество М является частично упорядоченным, а указанные элементы с и d несравнимы. Отношение полного порядка обладает свойствами иррефлексивности, антисимметричности и дихотомии. Полный порядок называют еще линейным или совершенным.
Для множества действительных чисел R отношения и являются отношениями полного порядка. Для семейства подмножеств некоторого множества М отношение является отношением частичного порядка. Например, {a1, a3} {a1, a2, a3}, а подмножества {a1, a3} и {a1, a2, a4} несравнимы.
Порядок букв в алфавите и естественный порядок цифр являются полными порядками. На основе порядка букв строится лексикографический порядок слов, используемый в словарях и определяемый следующим образом.
Обозначим это отношение порядка символом . Пусть имеются слова w1 = a11a12 … a1m и w2 = a21a22 … a2n. Тогда w1w2, если и только если либо w1 = paiq, w2 = pajr и аiaj, где p, q и r – некоторые слова, возможно, пустые, а аi и aj – буквы, либо w2 = w1p, где р – непустое слово.
Например, учебникученик и морморе. В первом случаер = уче, аi = б, аj = н, q = ник, r = ик, и в алфавите буква «н» стоит дальше буквы «б». Потому в словаре слово «ученик» следует искать после слова «учебник». Во втором случае w1 = мор и р = е. Согласно лексикографическому порядку слово «море» должно быть помещено в словаре после слова «мор».
- Литература
- Перечень компьютерных программ, наглядных и других пособий, методических указаний и материалов и технических средств обучения
- 1.2.Операции над множествами
- 1.3. Булева алгебра множеств
- 1.4. Разбиения и покрытия
- 2. Отношения бинарные и n-арные
- 2.1. Декартово произведение
- 2.2. Бинарные отношения (соответствия)
- 2.3. Операции над бинарными отношениями
- 2.4. Функциональные отношения
- 2.5. Бинарные отношения на множестве
- 2.6. Алгебраические системы
- 3. Основные понятия теории графов
- 3.1. Абстрактный граф
- 3.2. Графическое представление бинарного отношения
- Множеств а и в
- 3.3. Матричные представления графа
- 3.4. Части графа
- 3.5. Достижимость и связность
- 3.6. Доминирующие множества графа
- 3.7. Независимые множества графа
- 3.8. Раскраска графа
- 3.9.Планарность графов
- 3.10. Инварианты графов
- 4. Булевы функции
- 4.1. Способы задания булевой функции
- 4.2. Элементарные булевы функции и алгебраические формы
- 4.3. Интерпретации булевой алгебры
- 4.4. Нормальные формы булевых функций
- 4.4.1. Дизъюнктивные нормальные формы
- 4.4.2. Конъюнктивные нормальные формы
- 4.5 Полнота и замкнутость системы логических функций
- 4.6. Локальные упрощения днф
- 4.6.1. Удаление избыточных элементарных конъюнкций
- 4.6.2. Удаление избыточных литералов
- 4.7. Графическое представление булева пространства и булевых функций
- 4.7.1. Булев гиперкуб
- 4.7.2. Развертка гиперкуба на плоскости. Карта Карно
- 4.8. Минимизация днф
- 4.8.1. Метод Квайна-МакКласки
- 4.8.2. Метод Блейка-Порецкого
- 4.8.3. Визуально-матричный метод минимизации
- 5. Элементы математической логики
- 5.1 Алгебра высказываний
- Всякое высказывание логично следует из самого себя.
- 2. Закон противоречия:
- Если из а следует b, а b ложно, то а тоже ложно.
- 5.2. Логические отношения
- 5.3.Проверка правильности рассуждений
- 5.4. Решение логических задач методом характеристического уравнения
- 5.6. Кванторы
- 5.7 Эквивалентные соотношения. Префиксная нормальная форма
- 6. Основы теории алгоритмов
- 6.1. Интуитивное понятие об алгоритме
- 6.2. Три типа алгоритмических моделей
- 6.3. Кризис теории множеств антиномии. Выводы из антиномий
- 6.4. Машины Тьюринга как модели алгоритмов
- 6.5. Алгоритмы решения некоторых задач теории графов на графах
- 7. Конечный автомат и его описание.
- 7.2. Представления автомата
- 7.3. Связь между моделями Мили и Мура
- 7.4. Автомат с абстрактным состоянием. Булев автомат
- 7.5. Понятие о регулярных выражениях алгебры событий.
- 7.6. Задачи абстрактной теории конечных автоматов
- 8. Комбинаторные задачи и методы комбинаторного поиска
- 8.1. Задачи подсчета числа комбинаторных решений
- 8.2. Особенности оптимизационных комбинаторных задач
- 8.3. Вычислительная сложность
- 8.4. Методы комбинаторного поиска
- 8.5. Задача о кратчайшем покрытии и методы ее решения
- 8.5.1. Постановка задачи
- 8.5.2. Приближенные методы решения задачи
- 8.5.3. Точный метод
- Вопросы к зачету
- 28. Нормальные формы булевых функций. Дизъюнктивные нормальные формы
- 44. Эквивалентные соотношения. Префиксная нормальная форма
- Практический раздел Контрольная работа Указания по выбору варианта
- Контрольное задание №1. Используя диаграммы Эйлера-Венна, решить задачу
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №2. Получить сднф, скнф, используя таблицу истинности. Построить днф, кнф, упростив выражение.
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №3. Упростить схему (рис. 2)
- Методические указания
- Задачи для самостоятельного решения
- Задачи для самостоятельного решения
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №6. Найти инварианты неориентированного графа, заданного матрицей смежности
- Методические указания
- Задачи для самостоятельного решения