4.4.2. Конъюнктивные нормальные формы
Элементарной дизъюнкцией Di является многоместная конъюнкция попарно различных литералов, т. е. Di = . К элементарным дизъюнкциям относятся также одиночные литералы и константа 0 – дизъюнкция, состоящая из пустого множества литералов. Число литераловr элементарной дизъюнкции называется ее рангом. Элементарная дизъюнкция называется полной относительно переменных x1, x2, …, xn, если она содержит символы всех переменных (со знаком отрицания или без него). Ранг таких дизъюнкций равен n.
Конъюнктивная нормальная форма (КНФ) – это выражение вида Di, т. е. конъюнкция элементарных дизъюнкций. Примером конъюнктивной нормальной формы является выражение (х2 х3 х4)(х1 х2). Одна элементарная дизъюнкция также может считаться КНФ.
Согласно принципу двойственности выражение (4.1) можно преобразовать в следующее выражение, которое также справедливо:
f(x1, x2, …, xn) =f(1, 2, … , m, xm+1, … , xn)).
Эта формула называется конъюнктивным разложением функции f (x1, x2, … , xn) по переменным x1, x2, … , xm. Справедливость ее может быть доказана так же, как справедливость формулы (4.1). Так же крайними случаями конъюнктивного разложения являются разложение по одной переменной и по всем переменным. Последнее называется совершенной конъюнктивной нормальной формой (СКНФ) и имеет вид
f(x1, x2, …, xn) =f(1, 2, … , n)). (4.2)
СКНФ, представляющую произвольную булеву функцию, так же, как ее СДНФ, легко построить по табличному заданию этой функции. Согласно формуле достаточно выделить наборы (1, 2, … , n), на которых функция принимает значение 0 (если f(1, 2, … , n) = 1, то весь сомножитель (1) обращается в 1), и для каждого из них ввести в СДНФ полную элементарную дизъюнкцию, где любая переменнаяxi присутствует с отрицанием, если i = 1, и без отрицания, если i = 0.
Очевидно, для любой булевой функции f(x1, x2, …, xn), кроме константы 1, существует единственная СКНФ (с точностью до порядка литералов и дизъюнкций). Так же, как СДНФ, эта форма представления булевой функции является канонической. СКНФ для функции, которую задает табл. 4.5, имеет следующий вид:
(х1 х2 х3)(х1 х2 х3)(х1 х2 х3)(х1 х2 х3)(х1 х2 х3).
Константа 0 представляется в виде СКНФ, которая содержит все различные полные элементарные дизъюнкции, которые называют конституентами нуля (в литературе используется также термин макстерм). Конституента нуля принимает значение 0 на единственном наборе значений переменных.
- Литература
- Перечень компьютерных программ, наглядных и других пособий, методических указаний и материалов и технических средств обучения
- 1.2.Операции над множествами
- 1.3. Булева алгебра множеств
- 1.4. Разбиения и покрытия
- 2. Отношения бинарные и n-арные
- 2.1. Декартово произведение
- 2.2. Бинарные отношения (соответствия)
- 2.3. Операции над бинарными отношениями
- 2.4. Функциональные отношения
- 2.5. Бинарные отношения на множестве
- 2.6. Алгебраические системы
- 3. Основные понятия теории графов
- 3.1. Абстрактный граф
- 3.2. Графическое представление бинарного отношения
- Множеств а и в
- 3.3. Матричные представления графа
- 3.4. Части графа
- 3.5. Достижимость и связность
- 3.6. Доминирующие множества графа
- 3.7. Независимые множества графа
- 3.8. Раскраска графа
- 3.9.Планарность графов
- 3.10. Инварианты графов
- 4. Булевы функции
- 4.1. Способы задания булевой функции
- 4.2. Элементарные булевы функции и алгебраические формы
- 4.3. Интерпретации булевой алгебры
- 4.4. Нормальные формы булевых функций
- 4.4.1. Дизъюнктивные нормальные формы
- 4.4.2. Конъюнктивные нормальные формы
- 4.5 Полнота и замкнутость системы логических функций
- 4.6. Локальные упрощения днф
- 4.6.1. Удаление избыточных элементарных конъюнкций
- 4.6.2. Удаление избыточных литералов
- 4.7. Графическое представление булева пространства и булевых функций
- 4.7.1. Булев гиперкуб
- 4.7.2. Развертка гиперкуба на плоскости. Карта Карно
- 4.8. Минимизация днф
- 4.8.1. Метод Квайна-МакКласки
- 4.8.2. Метод Блейка-Порецкого
- 4.8.3. Визуально-матричный метод минимизации
- 5. Элементы математической логики
- 5.1 Алгебра высказываний
- Всякое высказывание логично следует из самого себя.
- 2. Закон противоречия:
- Если из а следует b, а b ложно, то а тоже ложно.
- 5.2. Логические отношения
- 5.3.Проверка правильности рассуждений
- 5.4. Решение логических задач методом характеристического уравнения
- 5.6. Кванторы
- 5.7 Эквивалентные соотношения. Префиксная нормальная форма
- 6. Основы теории алгоритмов
- 6.1. Интуитивное понятие об алгоритме
- 6.2. Три типа алгоритмических моделей
- 6.3. Кризис теории множеств антиномии. Выводы из антиномий
- 6.4. Машины Тьюринга как модели алгоритмов
- 6.5. Алгоритмы решения некоторых задач теории графов на графах
- 7. Конечный автомат и его описание.
- 7.2. Представления автомата
- 7.3. Связь между моделями Мили и Мура
- 7.4. Автомат с абстрактным состоянием. Булев автомат
- 7.5. Понятие о регулярных выражениях алгебры событий.
- 7.6. Задачи абстрактной теории конечных автоматов
- 8. Комбинаторные задачи и методы комбинаторного поиска
- 8.1. Задачи подсчета числа комбинаторных решений
- 8.2. Особенности оптимизационных комбинаторных задач
- 8.3. Вычислительная сложность
- 8.4. Методы комбинаторного поиска
- 8.5. Задача о кратчайшем покрытии и методы ее решения
- 8.5.1. Постановка задачи
- 8.5.2. Приближенные методы решения задачи
- 8.5.3. Точный метод
- Вопросы к зачету
- 28. Нормальные формы булевых функций. Дизъюнктивные нормальные формы
- 44. Эквивалентные соотношения. Префиксная нормальная форма
- Практический раздел Контрольная работа Указания по выбору варианта
- Контрольное задание №1. Используя диаграммы Эйлера-Венна, решить задачу
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №2. Получить сднф, скнф, используя таблицу истинности. Построить днф, кнф, упростив выражение.
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №3. Упростить схему (рис. 2)
- Методические указания
- Задачи для самостоятельного решения
- Задачи для самостоятельного решения
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №6. Найти инварианты неориентированного графа, заданного матрицей смежности
- Методические указания
- Задачи для самостоятельного решения