Методические указания
Разбиением множества M на классы называется представление данного множества в виде суммы попарно непересекающихся его подмножеств Mi, i = 1, 2, ..., n, таких, что каждый элемент множества M является в то же время и элементом подмножеств Mi (в точности одного подмножества Mi), т.е.
М = М1М2 ... Мn
Мi Мj = 0 при ij; Мi Мj = Мi при i=j; i,j = 1,2, ...,n.
Классы Мi называются классами эквивалентности. Если элементы mt и mk принадлежат одному и тому же классу, то они называются эквивалентными по отношению к данному разбиению.
Пусть М = AВС где А, В, С - пересекающиеся множества. Тогда разбиение множества М на классы можно представить в следующем виде:
M=
Решение.
В качестве универсального выберем множество всех деталей. Число его элементов равно 100. Пусть А - множество деталей, обработанных на первом станке, В - на втором, С - на третьем. Число элементов множества А обозначим n(A). Оно равно 42, т.е. n(A)=42. Аналогично, n(В)=30, n(С)=28. Обратимся к диаграмме (рис. 1).
Рис. 1. Диаграмма Эйлера-Венна
Обведенное на чертеже жирной линией множество А∪В∪С есть множество деталей, обработанных хотя бы на одном из станков. Оно разбито на 7 непересекающихся подмножеств, обозначенных на чертеже цифрами. Область 1 есть множество деталей, прошедших обработку на всех трех станках, т.е. множество А∩В∩С. По условию задачи n(А∩В∩С)=3. Множество деталей, обработанных на первом и втором станках, т.е. А∩В, есть сумма областей, помеченных цифрами 1 и 2. Причем область 2 - множество деталей, обработанных только на первом и втором станках.
По условию задачи n(А∩В)=5. Следовательно, число деталей, обработанных только на первом и втором станках, равно 5-3=2. Аналогично, число элементов множества, обозначенного цифрой 3, есть число деталей, прошедших обработку на первом и третьем станках, оно равно n(А∩С) - n(А∩В∩С)=10-3=7. Число деталей, прошедших обработку только на втором и третьем станках (область 4), равно n(В∩С) -n(А∩В∩С)=8-3=5.
Область, помеченная на чертеже цифрой 5, есть множество деталей, обработанных только на первом станке. Число элементов этого множества получим, если из числа всех обработанных на первом станке деталей вычесть число деталей, обработанных одновременно на первом и втором, а также на первом и третьем станках, в том числе и на всех трех станках, 42-(3+2+7)=30.
Аналогично можно определить число деталей, обработанных только на втором станке (область 6), 30-(3+2+5)=20, а также только на третьем (область 7) 28-(3+7+5)=13. Число всех обработанных деталей, т.е. n(А∪В∪С), получим, если сложим число элементов всех областей с 1 по 7. Оно равно 80. Дополнением к нему является множество необработанных деталей U\ А∪В∪С = А∪В∪С , n(А∪В∪С )=100-80=20.
- Литература
- Перечень компьютерных программ, наглядных и других пособий, методических указаний и материалов и технических средств обучения
- 1.2.Операции над множествами
- 1.3. Булева алгебра множеств
- 1.4. Разбиения и покрытия
- 2. Отношения бинарные и n-арные
- 2.1. Декартово произведение
- 2.2. Бинарные отношения (соответствия)
- 2.3. Операции над бинарными отношениями
- 2.4. Функциональные отношения
- 2.5. Бинарные отношения на множестве
- 2.6. Алгебраические системы
- 3. Основные понятия теории графов
- 3.1. Абстрактный граф
- 3.2. Графическое представление бинарного отношения
- Множеств а и в
- 3.3. Матричные представления графа
- 3.4. Части графа
- 3.5. Достижимость и связность
- 3.6. Доминирующие множества графа
- 3.7. Независимые множества графа
- 3.8. Раскраска графа
- 3.9.Планарность графов
- 3.10. Инварианты графов
- 4. Булевы функции
- 4.1. Способы задания булевой функции
- 4.2. Элементарные булевы функции и алгебраические формы
- 4.3. Интерпретации булевой алгебры
- 4.4. Нормальные формы булевых функций
- 4.4.1. Дизъюнктивные нормальные формы
- 4.4.2. Конъюнктивные нормальные формы
- 4.5 Полнота и замкнутость системы логических функций
- 4.6. Локальные упрощения днф
- 4.6.1. Удаление избыточных элементарных конъюнкций
- 4.6.2. Удаление избыточных литералов
- 4.7. Графическое представление булева пространства и булевых функций
- 4.7.1. Булев гиперкуб
- 4.7.2. Развертка гиперкуба на плоскости. Карта Карно
- 4.8. Минимизация днф
- 4.8.1. Метод Квайна-МакКласки
- 4.8.2. Метод Блейка-Порецкого
- 4.8.3. Визуально-матричный метод минимизации
- 5. Элементы математической логики
- 5.1 Алгебра высказываний
- Всякое высказывание логично следует из самого себя.
- 2. Закон противоречия:
- Если из а следует b, а b ложно, то а тоже ложно.
- 5.2. Логические отношения
- 5.3.Проверка правильности рассуждений
- 5.4. Решение логических задач методом характеристического уравнения
- 5.6. Кванторы
- 5.7 Эквивалентные соотношения. Префиксная нормальная форма
- 6. Основы теории алгоритмов
- 6.1. Интуитивное понятие об алгоритме
- 6.2. Три типа алгоритмических моделей
- 6.3. Кризис теории множеств антиномии. Выводы из антиномий
- 6.4. Машины Тьюринга как модели алгоритмов
- 6.5. Алгоритмы решения некоторых задач теории графов на графах
- 7. Конечный автомат и его описание.
- 7.2. Представления автомата
- 7.3. Связь между моделями Мили и Мура
- 7.4. Автомат с абстрактным состоянием. Булев автомат
- 7.5. Понятие о регулярных выражениях алгебры событий.
- 7.6. Задачи абстрактной теории конечных автоматов
- 8. Комбинаторные задачи и методы комбинаторного поиска
- 8.1. Задачи подсчета числа комбинаторных решений
- 8.2. Особенности оптимизационных комбинаторных задач
- 8.3. Вычислительная сложность
- 8.4. Методы комбинаторного поиска
- 8.5. Задача о кратчайшем покрытии и методы ее решения
- 8.5.1. Постановка задачи
- 8.5.2. Приближенные методы решения задачи
- 8.5.3. Точный метод
- Вопросы к зачету
- 28. Нормальные формы булевых функций. Дизъюнктивные нормальные формы
- 44. Эквивалентные соотношения. Префиксная нормальная форма
- Практический раздел Контрольная работа Указания по выбору варианта
- Контрольное задание №1. Используя диаграммы Эйлера-Венна, решить задачу
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №2. Получить сднф, скнф, используя таблицу истинности. Построить днф, кнф, упростив выражение.
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №3. Упростить схему (рис. 2)
- Методические указания
- Задачи для самостоятельного решения
- Задачи для самостоятельного решения
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №6. Найти инварианты неориентированного графа, заданного матрицей смежности
- Методические указания
- Задачи для самостоятельного решения