4.6.1. Удаление избыточных элементарных конъюнкций
В первом случае элементарная конъюнкция k избыточна, если k D = D. Это значит, что k и D находятся в отношении формальной импликации, т. е. k D. Функция g имплицирует функцию f, если f имеет значение 1 везде, где имеет значение 1 функция g. В рассматриваемом случае ДНФ D обращается в единицу при любом наборе значений переменных, обращающем конъюнкцию k в единицу, независимо от того, какие значения принимают переменные, не входящие в k.
Пусть троичная матрица V представляет ДНФ D, а троичный вектор v – элементарную конъюнкцию k. Тогда результатом подстановки в D значений переменных, обращающих конъюнкцию k в единицу, является минор матрицы V, образованный строками, не ортогональными вектору v и столбцами, соответствующими компонентам вектора v, имеющими значение «–». Если этот минор является вырожденной матрицей, т. е. D тождественно равна единице, то конъюнкция k избыточна. В противном случае вектор, ортогональный всем строкам полученного минора, представляет набор значений переменных, обращающий D в нуль.
Рассмотрим следующую троичную матрицу и проверим на избыточность ее первую строку:
.
Минор, образованный столбцами х3 и х6, где элементы первой строки имеют значение «–», и строками 2, 3, 4 и 5, не ортогональными первой строке, имеет вид
.
Эта матрица является вырожденной, следовательно, первая строка избыточна. Любой входящий в нее булев вектор принадлежит некоторому интервалу, представляемому какой-либо из строк данной матрицы.
Удалив строку 1, получим матрицу, в которой строка 2 ортогональна всем остальным ее строкам. Это значит, что никакой булев вектор, принадлежащий интервалу, представляемому данной строкой, не принадлежит никакому из других интервалов, представляемых остальными строками. Соответствующий минор является пустой матрицей (с пустым множеством строк). Такая матрица представляет константу 0. Таким образом, строка 2 не является избыточной.
Что касается строки 3, то соответствующий минор является однострочной невырожденной матрицей:
.
Ортогональным вектором для данной строки является (0 –). Подставив 0 во вторую компоненту строки 3, получим вектор, ортогональный всем строкам матрицы. Строка 3 также является неизбыточной для заданной матрицы.
Выполняя подобные построения над остальными строками, убедимся, что они также не являются избыточными.
- Литература
- Перечень компьютерных программ, наглядных и других пособий, методических указаний и материалов и технических средств обучения
- 1.2.Операции над множествами
- 1.3. Булева алгебра множеств
- 1.4. Разбиения и покрытия
- 2. Отношения бинарные и n-арные
- 2.1. Декартово произведение
- 2.2. Бинарные отношения (соответствия)
- 2.3. Операции над бинарными отношениями
- 2.4. Функциональные отношения
- 2.5. Бинарные отношения на множестве
- 2.6. Алгебраические системы
- 3. Основные понятия теории графов
- 3.1. Абстрактный граф
- 3.2. Графическое представление бинарного отношения
- Множеств а и в
- 3.3. Матричные представления графа
- 3.4. Части графа
- 3.5. Достижимость и связность
- 3.6. Доминирующие множества графа
- 3.7. Независимые множества графа
- 3.8. Раскраска графа
- 3.9.Планарность графов
- 3.10. Инварианты графов
- 4. Булевы функции
- 4.1. Способы задания булевой функции
- 4.2. Элементарные булевы функции и алгебраические формы
- 4.3. Интерпретации булевой алгебры
- 4.4. Нормальные формы булевых функций
- 4.4.1. Дизъюнктивные нормальные формы
- 4.4.2. Конъюнктивные нормальные формы
- 4.5 Полнота и замкнутость системы логических функций
- 4.6. Локальные упрощения днф
- 4.6.1. Удаление избыточных элементарных конъюнкций
- 4.6.2. Удаление избыточных литералов
- 4.7. Графическое представление булева пространства и булевых функций
- 4.7.1. Булев гиперкуб
- 4.7.2. Развертка гиперкуба на плоскости. Карта Карно
- 4.8. Минимизация днф
- 4.8.1. Метод Квайна-МакКласки
- 4.8.2. Метод Блейка-Порецкого
- 4.8.3. Визуально-матричный метод минимизации
- 5. Элементы математической логики
- 5.1 Алгебра высказываний
- Всякое высказывание логично следует из самого себя.
- 2. Закон противоречия:
- Если из а следует b, а b ложно, то а тоже ложно.
- 5.2. Логические отношения
- 5.3.Проверка правильности рассуждений
- 5.4. Решение логических задач методом характеристического уравнения
- 5.6. Кванторы
- 5.7 Эквивалентные соотношения. Префиксная нормальная форма
- 6. Основы теории алгоритмов
- 6.1. Интуитивное понятие об алгоритме
- 6.2. Три типа алгоритмических моделей
- 6.3. Кризис теории множеств антиномии. Выводы из антиномий
- 6.4. Машины Тьюринга как модели алгоритмов
- 6.5. Алгоритмы решения некоторых задач теории графов на графах
- 7. Конечный автомат и его описание.
- 7.2. Представления автомата
- 7.3. Связь между моделями Мили и Мура
- 7.4. Автомат с абстрактным состоянием. Булев автомат
- 7.5. Понятие о регулярных выражениях алгебры событий.
- 7.6. Задачи абстрактной теории конечных автоматов
- 8. Комбинаторные задачи и методы комбинаторного поиска
- 8.1. Задачи подсчета числа комбинаторных решений
- 8.2. Особенности оптимизационных комбинаторных задач
- 8.3. Вычислительная сложность
- 8.4. Методы комбинаторного поиска
- 8.5. Задача о кратчайшем покрытии и методы ее решения
- 8.5.1. Постановка задачи
- 8.5.2. Приближенные методы решения задачи
- 8.5.3. Точный метод
- Вопросы к зачету
- 28. Нормальные формы булевых функций. Дизъюнктивные нормальные формы
- 44. Эквивалентные соотношения. Префиксная нормальная форма
- Практический раздел Контрольная работа Указания по выбору варианта
- Контрольное задание №1. Используя диаграммы Эйлера-Венна, решить задачу
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №2. Получить сднф, скнф, используя таблицу истинности. Построить днф, кнф, упростив выражение.
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №3. Упростить схему (рис. 2)
- Методические указания
- Задачи для самостоятельного решения
- Задачи для самостоятельного решения
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №6. Найти инварианты неориентированного графа, заданного матрицей смежности
- Методические указания
- Задачи для самостоятельного решения