3.6. Доминирующие множества графа
Подмножество S множества вершин V графа G называется доминирующим множеством графа G, если выполняется условие S N(S) V, где N(S) , а N(v) множество вершин, смежных с вершиной v. Другими словами, множество S является доминирующим, если каждая вершина из множества V \ S смежна с некоторой вершиной из S. Если S является доминирующим множеством некоторого графа G, то всякое множество вершин S S этого графа также является доминирующим. Поэтому представляет интерес задача нахождения минимальных доминирующих множеств, т. е. таких, у которых ни одно собственное подмножество не является доминирующим. Доминирующее множество, имеющее наименьшую мощность, принято называть наименьшим. Эта мощность называется числом доминирования графа G и обозначается символом μ(G).
Наглядным примером задачи о наименьшем доминирующем множестве является одна из задач о ферзях, где надо расставить на шахматной доске наименьшее число ферзей так, чтобы каждая клетка была под ударом хотя бы одного из них. Для этого достаточно найти наименьшее доминирующее множество в графе, вершины которого соответствуют клеткам шахматной доск две вершины связаны ребром, если и только если они взаимно достижимы ходом ферзя. Найденное множество вершин указывает, куда надо поставить ферзей, а их число, которое в данном случае равно пяти, есть число доминирования данного графа.
Задача о наименьшем доминирующем множестве сводится к известной задаче о кратчайшем покрытии, которая подробно будет рассмотрена ниже. В данном случае ее можно поставить следующим образом. Матрицу смежности заданного графа G дополним единицами на главной диагонали. Тогда требуется найти минимальную совокупность строк полученной матрицы, такую, что каждый столбец имел бы единицу по крайней мере в одной из строк найденной совокупности. Говорят, что строка матрицы покрывает столбец, если данный столбец имеет единицу в этой строке.
Нетрудно видеть, что наименьшими доминирующими множествами графа G (рис. 3.5) являются {v3, v7}, {v5, v7} и {v6, v7}. Его матрица смежности, дополненная единицами на главной диагонали, имеет вид
Каждое из соответствующих множеств строк рассматриваемой матрицы покрывает все ее столбцы.
e3
e1 e4 e5
e2 e7
e6 e8 e10
e9
Рис. 3.5. Граф G
- Литература
- Перечень компьютерных программ, наглядных и других пособий, методических указаний и материалов и технических средств обучения
- 1.2.Операции над множествами
- 1.3. Булева алгебра множеств
- 1.4. Разбиения и покрытия
- 2. Отношения бинарные и n-арные
- 2.1. Декартово произведение
- 2.2. Бинарные отношения (соответствия)
- 2.3. Операции над бинарными отношениями
- 2.4. Функциональные отношения
- 2.5. Бинарные отношения на множестве
- 2.6. Алгебраические системы
- 3. Основные понятия теории графов
- 3.1. Абстрактный граф
- 3.2. Графическое представление бинарного отношения
- Множеств а и в
- 3.3. Матричные представления графа
- 3.4. Части графа
- 3.5. Достижимость и связность
- 3.6. Доминирующие множества графа
- 3.7. Независимые множества графа
- 3.8. Раскраска графа
- 3.9.Планарность графов
- 3.10. Инварианты графов
- 4. Булевы функции
- 4.1. Способы задания булевой функции
- 4.2. Элементарные булевы функции и алгебраические формы
- 4.3. Интерпретации булевой алгебры
- 4.4. Нормальные формы булевых функций
- 4.4.1. Дизъюнктивные нормальные формы
- 4.4.2. Конъюнктивные нормальные формы
- 4.5 Полнота и замкнутость системы логических функций
- 4.6. Локальные упрощения днф
- 4.6.1. Удаление избыточных элементарных конъюнкций
- 4.6.2. Удаление избыточных литералов
- 4.7. Графическое представление булева пространства и булевых функций
- 4.7.1. Булев гиперкуб
- 4.7.2. Развертка гиперкуба на плоскости. Карта Карно
- 4.8. Минимизация днф
- 4.8.1. Метод Квайна-МакКласки
- 4.8.2. Метод Блейка-Порецкого
- 4.8.3. Визуально-матричный метод минимизации
- 5. Элементы математической логики
- 5.1 Алгебра высказываний
- Всякое высказывание логично следует из самого себя.
- 2. Закон противоречия:
- Если из а следует b, а b ложно, то а тоже ложно.
- 5.2. Логические отношения
- 5.3.Проверка правильности рассуждений
- 5.4. Решение логических задач методом характеристического уравнения
- 5.6. Кванторы
- 5.7 Эквивалентные соотношения. Префиксная нормальная форма
- 6. Основы теории алгоритмов
- 6.1. Интуитивное понятие об алгоритме
- 6.2. Три типа алгоритмических моделей
- 6.3. Кризис теории множеств антиномии. Выводы из антиномий
- 6.4. Машины Тьюринга как модели алгоритмов
- 6.5. Алгоритмы решения некоторых задач теории графов на графах
- 7. Конечный автомат и его описание.
- 7.2. Представления автомата
- 7.3. Связь между моделями Мили и Мура
- 7.4. Автомат с абстрактным состоянием. Булев автомат
- 7.5. Понятие о регулярных выражениях алгебры событий.
- 7.6. Задачи абстрактной теории конечных автоматов
- 8. Комбинаторные задачи и методы комбинаторного поиска
- 8.1. Задачи подсчета числа комбинаторных решений
- 8.2. Особенности оптимизационных комбинаторных задач
- 8.3. Вычислительная сложность
- 8.4. Методы комбинаторного поиска
- 8.5. Задача о кратчайшем покрытии и методы ее решения
- 8.5.1. Постановка задачи
- 8.5.2. Приближенные методы решения задачи
- 8.5.3. Точный метод
- Вопросы к зачету
- 28. Нормальные формы булевых функций. Дизъюнктивные нормальные формы
- 44. Эквивалентные соотношения. Префиксная нормальная форма
- Практический раздел Контрольная работа Указания по выбору варианта
- Контрольное задание №1. Используя диаграммы Эйлера-Венна, решить задачу
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №2. Получить сднф, скнф, используя таблицу истинности. Построить днф, кнф, упростив выражение.
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №3. Упростить схему (рис. 2)
- Методические указания
- Задачи для самостоятельного решения
- Задачи для самостоятельного решения
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №6. Найти инварианты неориентированного графа, заданного матрицей смежности
- Методические указания
- Задачи для самостоятельного решения