Задачи для самостоятельного решения
1.1. Каждый из 500 студентов обязан посещать хотя бы один из трех спецкурсов: по математике, физике, астрономии. Три спецкурса посещают 10 студентов, по математике и физике - 30, по математике и астрономии - 25; спецкурс только по физике - 80 студентов. Известно также, что спецкурс по математике посещают 345 студентов, по физике - 145, по астрономии - 100 студентов. Сколько студентов посещают спецкурс только по астрономии? Сколько студентов посещают два спецкурса?
1.2. 500 студентов посещают три спецкурса. Спецкурс только по математике, только по математике и физике и только по физике и астрономии посещают одинаковое число студентов; три спецкурса посещают 20 студентов. Спецкурс по математике посещают столько же студентов, сколько спецкурс по физике. Спецкурс только по физике посещают 50 студентов, а спецкурс по астрономии - 260 студентов. Сколько студентов посещают только один спецкурс?
1.3. Экзамен по математике содержал три задачи: по алгебре, по геометрии и по тригонометрии. Из 750 абитуриентов задачу по алгебре решили 400 абитуриентов, по геометрии - 480, по тригонометрии- 420; задачи по алгебре или геометрии решили 630 абитуриентов; по геометрии или тригонометрии - 600 абитуриентов; по алгебре или тригонометрии - 620 абитуриентов; 100 абитуриентов не решили ни одной задачи. Сколько абитуриентов решили все задачи? Сколько абитуриентов решили только одну задачу?
1.4. Экзамен по математике содержал три задачи: по алгебре, геометрии и тригонометрии. Из 800 абитуриентов задачу по алгебре решили 250 человек, по алгебре или геометрии - 660 человек, по две задачи решили 400 человек, из них две задачи по алгебре и геометрии решили 150 человек, по алгебре и тригонометрии 50 человек; только по тригонометрии задачи решили 120 человек. Сколько не решили ни одной задачи? Сколько человек решили задачи только по геометрии?
1.5. На кафедре иностранных языков работают 20 преподавателей, из них 12 преподают английский язык, 11 – немецкий, 9-французский; 5 преподавателей преподают английский и немецкий языки, 4 - английский и французский, 3 –немецкий и французский. Сколько преподавателей преподают все три языка? Только два языка?
1.6. На кафедре иностранных языков работают 37 преподавателей, из них французский преподают 23 преподавателя, английский язык 28 преподавателей, все три языка - 3 преподавателя. Число преподавателей, ведущих занятия только по английскому языку равно числу преподавателей, ведущих занятия только по немецкому языку. Число преподавателей, ведущих занятия только по английскому и немецкому языкам, равно числу преподавателей, ведущих занятия только по немецкому и французскому языкам. Сколько преподавателей преподают один иностранный язык? Сколько преподавателей преподают один английский язык?
1.7. На курсах иностранных языков учится 600 человек, из них французский изучают 220 человек, английский - 270 человек, слушатели, изучающие английский язык, не изучают немецкий язык; один французский язык изучают 100 человек, один немецкий - 180 человек. Сколько человек изучает по два иностранных языка? Сколько человек изучает один иностранный язык?
1.8. Группа студентов из 25 человек сдала экзаменационную сессию следующими результатами: 2 человека получили только 'отлично", 3 человека получили отличные, хорошие и удовлетворительные оценки; 4 человека только “хорошо”; 3 человека только хорошие и удовлетворительные оценки; число студентов, сдавших сессию только на “отлично”, "хорошо", равно числу студентов, сдавших сессию только на "удовлетворительно". Студентов, получивших только отличные и удовлетворительные оценки - нет. Удовлетворительные или хорошие оценки получили 22 студента? Сколько студентов не явилось на экзамены? Сколько студентов сдали сессию только на удовлетворительно?
1.9. На курсы иностранных языков зачислено 300 слушателей. Из них французский или английский изучают 250 человек, английский и немецкий - 60 человек, английский и французский - 80 человек; число слушателей, изучающих только французский язык, равно числу слушателей, изучающих только немецкий язык; 70 человек изучает только английский I язык. Занятия по французскому и немецкому языкам проводятся единовременно. Сколько слушателей изучает немецкий язык или французский? Сколько слушателей не посещает занятия?
1.10. Преподаватели кафедры Прикладной математики преподают на трех факультетах: механическом, технологическом, экономическом. На технологическом факультете работает 22 преподавателя, на механическом - 23 преподавателя, на механическом и экономическом - 36 преподавателей; только на технологическом факультете - 10 преподавателей; 2 - на трех факультетах; 5 преподавателей работают только на механическом и экономическом факультетах. Число преподавателей, работающих только на механическом и технологическом факультетах, равно числу преподавателей, работающих на экономическом и технологическом факультетах. Сколько преподавателей работает на кафедре? Сколько преподавателей работают только на одном факультете?
1.11. Каждый из 500 студентов обязан посещать хотя бы один из трех спецкурсов: по математике, физике, астрономии. Три спецкурса посещают 10 студентов, по математике и физике - 30, по математике и астрономии - 25; спецкурс только по физике - 80 студентов. Известно также, что спецкурс по математике посещают 345 студентов, по физике - 145, по астрономии - 100 студентов. Сколько студентов посещают спецкурс только по астрономии? Сколько студентов посещают два спецкурса?
1.12. 500 студентов посещают три спецкурса. Спецкурс только по математике, только по математике и физике и только по физике и астрономии посещают одинаковое число студентов; три спецкурса посещают 20 студентов. Спецкурс по математике посещают столько же студентов, сколько спецкурс по физике. Один спецкурс по физике посещают 50 студентов, а спецкурс по астрономии - 250 студентов. Сколько студентов посещают только один спецкурс?
1.13. Экзамен по математике содержал три задачи: по алгебре, по геометрии и по тригонометрии. Из 750 абитуриентов задачу по алгебре решили 400 абитуриентов, по геометрии - 480, по тригонометрии- 420; задачи по алгебре или геометрии решили 630 абитуриентов; по геометрии или тригонометрии - 600 абитуриентов; по алгебре или тригонометрии - 620 абитуриентов; 100 абитуриентов не решили ни одной задачи. Сколько абитуриентов решили все задачи? Сколько абитуриентов решили только одну задачу?
1.14. Экзамен по математике содержал три задачи: по алгебре, геометрии и тригонометрии. Из 800 абитуриентов задачу по алгебре решили 250 человек, по алгебре или геометрии - 660 человек, по две задачи решили 400 человек, из них две задачи по алгебре и геометрии решили 150 человек, по алгебре и тригонометрии 50 человек; ни один абитуриент не решил все задачи; 20 абитуриентов не решили ни одной задачи; только по тригонометрии задачи решили 120 человек. Сколько решили только одну задачу? Сколько человек решили задачи по геометрии?
1.15. По итогам экзаменов из 37 студентов отличную оценку по математике имели 15 студентов, по физике - 16, по химии - 19, по математике и физике - 7, по математике и химии - 9, по физике и химии - 6, по всем трем предметам - 4. Сколько студентов получили хотя бы по одной отличной оценке?
1.16. В течение 30 дней сентября было 12 дождливых, 8 ветреных, 4 холодных, 5 дождливых и ветреных, 3 дождливых и холодных, 2 ветреных и холодных, а один день был и дождливый, и ветреный, и холодный. В течение скольких дней в сентябре была хорошая погода?
1.17. В классе 35 учащихся. Из них 20 посещают математический кружок, 11 - физический, 10 учеников не посещают ни одного из этих кружков. Сколько учеников посещают и математический, и физический кружок? Сколько учащихся посещают только математический кружок?
1.18. Староста курса представил следующий отчет о физкультурной работе: Всего - 45 студентов. Футбольная секция - 25 человек, баскетбольная секция - 30 человек, шахматная секция - 28 человек, футбольная и баскетбольная - 16, футбольная и шахматная - 18, баскетбольная и шахматная - 17. В трех секциях одновременно занимаются 15 человек. Объясните, почему отчет не был принят?
1.19. В одном из отделов научно-исследовательского института работают несколько человек, каждый из которых знает хотя бы один иностранный язык, причем 6 человек знают английский язык, 6 - немецкий, 7 - французский язык, 4 знают английский и немецкий, 3 - немецкий и французский, 2 - французский и английский, один человек знает все три языка. Сколько человек работает в отделе? Сколько человек знает только один язык?
1.20. На бал в Санкт-Петербург приехала известная модница княгиня Ростовская. Некоторые фрейлины, узнав об этом, купили себе такие же подвески, серьги и кольца. Из 115 фрейлин, присутствовавших на балу, 61 были в таких же подвесках, 65 - в серьгах и 50 - в кольцах. 36 фрейлин надели подвески и серьги, 23 - надели подвески и кольца, 27 - кольца и серьги. А самыми модными оказались 15 фрейлин, которые надели и подвески, и серьги, и кольца, такие же, как у княгини Ростовской. Сколько фрейлин не знало о приезде княгини Ростовской?
1.21. 17 арабов нашли волшебную лампу с джином и попросили у него исполнить их желания. 9 арабов захотели много золота, 4 - большой и красивый дворец, 6 - женский гарем. Одновременно золото и дворец попросили трое, гарем и золото - десять, дворец и гарем - трое арабов. Сколько арабов попросили все это вместе, если известно, что джин для каждого исполнил желание?
1.22. В деревне 500 пожилых женщин смотрят бразильский сериал. Из них 155 переживают за Марию Антонио, 108 интересуются жизнью Педро, 134 волнует судьба Хосе Игнасио, 48 женщин переживают за отношения Марии Антонио и Хосе Игнасио, 35 - волнуются за Марию Антонио и Педро, 23 - подозревают о родственных связях Хосе Игнасио и Педро, 17 женщины верят в счастье всех трех главных героев. А сколько женщин в деревне, смотрящих сериал, вообще ни за кого из главных героев не переживают и не верят в их счастье?
1.23. В племени Майя 37 индейцев. 12 из них на голове носят красные перья, 14 - синие, 17 - белые, 9 - красные и синие, 5 - красные и белые, 3 - синие и белые. Есть ли в племени Майя индейцы, у которых присутствуют перья всех трех цветов и если есть, то сколько?
1.24. В колонии находится 500 заключенных, каждый из которых осужден хотя бы по одной статье (№ А, № В, № С) Уголовного кодекса. Известно, что к 127 заключенным применялась статья А, к 210 – статья В, к 260 – статья С, к 80 – одновременно и статья А и статья В, к 20 – статьи А и С и к 45 – статьи В и С. Имеются ли в колонии заключенные, осужденные по всем трем статьям и, если имеются, то сколько их?
1.25. Из 21 дня, проведенного в санатории, 12 дней я принимал лечебные процедуры, 5 дней ездил на экскурсии. Сколько у меня было свободных дней, если 3 дня я сочетал лечебные процедуры и экскурсии?
- Литература
- Перечень компьютерных программ, наглядных и других пособий, методических указаний и материалов и технических средств обучения
- 1.2.Операции над множествами
- 1.3. Булева алгебра множеств
- 1.4. Разбиения и покрытия
- 2. Отношения бинарные и n-арные
- 2.1. Декартово произведение
- 2.2. Бинарные отношения (соответствия)
- 2.3. Операции над бинарными отношениями
- 2.4. Функциональные отношения
- 2.5. Бинарные отношения на множестве
- 2.6. Алгебраические системы
- 3. Основные понятия теории графов
- 3.1. Абстрактный граф
- 3.2. Графическое представление бинарного отношения
- Множеств а и в
- 3.3. Матричные представления графа
- 3.4. Части графа
- 3.5. Достижимость и связность
- 3.6. Доминирующие множества графа
- 3.7. Независимые множества графа
- 3.8. Раскраска графа
- 3.9.Планарность графов
- 3.10. Инварианты графов
- 4. Булевы функции
- 4.1. Способы задания булевой функции
- 4.2. Элементарные булевы функции и алгебраические формы
- 4.3. Интерпретации булевой алгебры
- 4.4. Нормальные формы булевых функций
- 4.4.1. Дизъюнктивные нормальные формы
- 4.4.2. Конъюнктивные нормальные формы
- 4.5 Полнота и замкнутость системы логических функций
- 4.6. Локальные упрощения днф
- 4.6.1. Удаление избыточных элементарных конъюнкций
- 4.6.2. Удаление избыточных литералов
- 4.7. Графическое представление булева пространства и булевых функций
- 4.7.1. Булев гиперкуб
- 4.7.2. Развертка гиперкуба на плоскости. Карта Карно
- 4.8. Минимизация днф
- 4.8.1. Метод Квайна-МакКласки
- 4.8.2. Метод Блейка-Порецкого
- 4.8.3. Визуально-матричный метод минимизации
- 5. Элементы математической логики
- 5.1 Алгебра высказываний
- Всякое высказывание логично следует из самого себя.
- 2. Закон противоречия:
- Если из а следует b, а b ложно, то а тоже ложно.
- 5.2. Логические отношения
- 5.3.Проверка правильности рассуждений
- 5.4. Решение логических задач методом характеристического уравнения
- 5.6. Кванторы
- 5.7 Эквивалентные соотношения. Префиксная нормальная форма
- 6. Основы теории алгоритмов
- 6.1. Интуитивное понятие об алгоритме
- 6.2. Три типа алгоритмических моделей
- 6.3. Кризис теории множеств антиномии. Выводы из антиномий
- 6.4. Машины Тьюринга как модели алгоритмов
- 6.5. Алгоритмы решения некоторых задач теории графов на графах
- 7. Конечный автомат и его описание.
- 7.2. Представления автомата
- 7.3. Связь между моделями Мили и Мура
- 7.4. Автомат с абстрактным состоянием. Булев автомат
- 7.5. Понятие о регулярных выражениях алгебры событий.
- 7.6. Задачи абстрактной теории конечных автоматов
- 8. Комбинаторные задачи и методы комбинаторного поиска
- 8.1. Задачи подсчета числа комбинаторных решений
- 8.2. Особенности оптимизационных комбинаторных задач
- 8.3. Вычислительная сложность
- 8.4. Методы комбинаторного поиска
- 8.5. Задача о кратчайшем покрытии и методы ее решения
- 8.5.1. Постановка задачи
- 8.5.2. Приближенные методы решения задачи
- 8.5.3. Точный метод
- Вопросы к зачету
- 28. Нормальные формы булевых функций. Дизъюнктивные нормальные формы
- 44. Эквивалентные соотношения. Префиксная нормальная форма
- Практический раздел Контрольная работа Указания по выбору варианта
- Контрольное задание №1. Используя диаграммы Эйлера-Венна, решить задачу
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №2. Получить сднф, скнф, используя таблицу истинности. Построить днф, кнф, упростив выражение.
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №3. Упростить схему (рис. 2)
- Методические указания
- Задачи для самостоятельного решения
- Задачи для самостоятельного решения
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №6. Найти инварианты неориентированного графа, заданного матрицей смежности
- Методические указания
- Задачи для самостоятельного решения