3.7. Независимые множества графа
Подмножество S множества вершин V графа G называется независимым множеством графа G, если выполняется условие S N(S) , т. е. любые две вершины из S не смежны. Если S – независимое множество, то любое его подмножество также является независимым. Поэтому представляет интерес задача нахождения в графе максимальных независимых множеств, т. е. таких, которые не являются собственными подмножествами никаких других независимых множеств.
Независимое множество, имеющее наибольшую мощность среди всех независимых множеств графа G, называют наибольшим независимым множеством, а его мощность называют числом независимости графа G и обозначают символом .
Примером задачи нахождения наибольшего независимого множества является другая задача о ферзях, в которой надо расставить на шахматной доске наибольшее число ферзей так, чтобы ни один из них не находился под ударом другого. Наибольшее независимое множество графа, представляющего шахматную доску, как определено выше, покажет, на какие клетки надо поставить ферзей. Наибольшее число ферзей, расставленных при указанном условии, которое в данном случае равно восьми, есть число независимости данного графа.
Иногда довольствуются получением максимального независимого множества, по мощности близкого к наибольшему. Одним из способов решения такой задачи является чередование следующих двух операций: выбора вершины с наименьшей степенью в качестве элемента искомого множества и удаления выбранной вершины из графа вместе с окрестностью. В результате может получиться наибольшее независимое множество, однако, как видно на примере графа, приведенного на рис. 3.6, это бывает не всегда.
Рис. 3.6. Граф для демонстрации получения независимого множества
Действительно, в качестве первой вершины для включения в решение может быть выбрана вершина v5. Тогда вслед за ней в решение включаются вершины v3 и v7. Мощность полученного таким образом множества на единицу меньше мощности наибольшего независимого множества {v1, v4, v6, v9}.
Вершинным покрытием графа G = (V, E) называется такое множество В V, что каждое ребро из Е инцидентно хотя бы одной вершине из В. Очевидно, что если В – вершинное покрытие, то V \ B – независимое множество. Вершинное покрытие наименьшей мощности в графе G является его наименьшим вершинным покрытием . Ясно, что еслиВ – наименьшее вершинное покрытие, то V \ B – наибольшее независимое множество.
Чтобы найти наименьшее вершинное покрытие в графе G, достаточно покрыть столбцы его матрицы инцидентности минимальным количеством ее строк. Матрица инцидентности графа на рис. 3.5 имеет следующий вид:
.
Строки v1, v3, v5 и v7 составляют кратчайшее покрытие этой матрицы. Множество вершин {v1, v3, v5, v7} является наименьшим вершинным покрытием данного графа. Следовательно, {v2, v4, v6} – одно из наибольших независимых множеств. Оно присутствует в решении предыдущего примера.
Подграф графа G, порождаемый его независимым множеством, является пустым подграфом, т. е. множество его ребер пусто. В графеG, который является дополнением графа G, это же множество порождает полный подграф, т. е. подграф графаG, в котором все вершины попарно смежны в графеG. Полный подграф называют еще кликой. Таким образом, задача нахождения полных подграфов, или клик, и задача нахождения независимых множеств в некотором графе являются двойственными по отношению друг к другу.
- Литература
- Перечень компьютерных программ, наглядных и других пособий, методических указаний и материалов и технических средств обучения
- 1.2.Операции над множествами
- 1.3. Булева алгебра множеств
- 1.4. Разбиения и покрытия
- 2. Отношения бинарные и n-арные
- 2.1. Декартово произведение
- 2.2. Бинарные отношения (соответствия)
- 2.3. Операции над бинарными отношениями
- 2.4. Функциональные отношения
- 2.5. Бинарные отношения на множестве
- 2.6. Алгебраические системы
- 3. Основные понятия теории графов
- 3.1. Абстрактный граф
- 3.2. Графическое представление бинарного отношения
- Множеств а и в
- 3.3. Матричные представления графа
- 3.4. Части графа
- 3.5. Достижимость и связность
- 3.6. Доминирующие множества графа
- 3.7. Независимые множества графа
- 3.8. Раскраска графа
- 3.9.Планарность графов
- 3.10. Инварианты графов
- 4. Булевы функции
- 4.1. Способы задания булевой функции
- 4.2. Элементарные булевы функции и алгебраические формы
- 4.3. Интерпретации булевой алгебры
- 4.4. Нормальные формы булевых функций
- 4.4.1. Дизъюнктивные нормальные формы
- 4.4.2. Конъюнктивные нормальные формы
- 4.5 Полнота и замкнутость системы логических функций
- 4.6. Локальные упрощения днф
- 4.6.1. Удаление избыточных элементарных конъюнкций
- 4.6.2. Удаление избыточных литералов
- 4.7. Графическое представление булева пространства и булевых функций
- 4.7.1. Булев гиперкуб
- 4.7.2. Развертка гиперкуба на плоскости. Карта Карно
- 4.8. Минимизация днф
- 4.8.1. Метод Квайна-МакКласки
- 4.8.2. Метод Блейка-Порецкого
- 4.8.3. Визуально-матричный метод минимизации
- 5. Элементы математической логики
- 5.1 Алгебра высказываний
- Всякое высказывание логично следует из самого себя.
- 2. Закон противоречия:
- Если из а следует b, а b ложно, то а тоже ложно.
- 5.2. Логические отношения
- 5.3.Проверка правильности рассуждений
- 5.4. Решение логических задач методом характеристического уравнения
- 5.6. Кванторы
- 5.7 Эквивалентные соотношения. Префиксная нормальная форма
- 6. Основы теории алгоритмов
- 6.1. Интуитивное понятие об алгоритме
- 6.2. Три типа алгоритмических моделей
- 6.3. Кризис теории множеств антиномии. Выводы из антиномий
- 6.4. Машины Тьюринга как модели алгоритмов
- 6.5. Алгоритмы решения некоторых задач теории графов на графах
- 7. Конечный автомат и его описание.
- 7.2. Представления автомата
- 7.3. Связь между моделями Мили и Мура
- 7.4. Автомат с абстрактным состоянием. Булев автомат
- 7.5. Понятие о регулярных выражениях алгебры событий.
- 7.6. Задачи абстрактной теории конечных автоматов
- 8. Комбинаторные задачи и методы комбинаторного поиска
- 8.1. Задачи подсчета числа комбинаторных решений
- 8.2. Особенности оптимизационных комбинаторных задач
- 8.3. Вычислительная сложность
- 8.4. Методы комбинаторного поиска
- 8.5. Задача о кратчайшем покрытии и методы ее решения
- 8.5.1. Постановка задачи
- 8.5.2. Приближенные методы решения задачи
- 8.5.3. Точный метод
- Вопросы к зачету
- 28. Нормальные формы булевых функций. Дизъюнктивные нормальные формы
- 44. Эквивалентные соотношения. Префиксная нормальная форма
- Практический раздел Контрольная работа Указания по выбору варианта
- Контрольное задание №1. Используя диаграммы Эйлера-Венна, решить задачу
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №2. Получить сднф, скнф, используя таблицу истинности. Построить днф, кнф, упростив выражение.
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №3. Упростить схему (рис. 2)
- Методические указания
- Задачи для самостоятельного решения
- Задачи для самостоятельного решения
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №6. Найти инварианты неориентированного графа, заданного матрицей смежности
- Методические указания
- Задачи для самостоятельного решения