Ю. Я. Кацман прикладная математика Численные методы
Учебное пособие
Томск 2000
УДК 519.6(075.8)
Кацман Ю. Я. Прикладная математика. Численные методы. Учебное пособие. – Томск: Изд. ТПУ, 2000. – 68 с.
В пособии в краткой форме изложены теоретические вопросы первой части курса прикладной математики, рассмотрены наиболее известные и широко применяемые методы вычислений. Каждая тема, при необходимости. иллюстрируется графически, после рассмотрения теоретического материала даны примеры расчетов. В конце каждого раздела приведены вопросы для самоконтроля. Пособие подготовлено на кафедре вычислительной техники, соответствует программе дисциплины и предназначено для студентов Центра дистанционного образования.
Печатается по постановлению Редакционно-издательского Совета Томского политехнического университета.
Рецензенты:
А.И. Кочегуров – доцент факультета систем управления Томского университета систем управления и радиоэлектроники.
В.И. Рейзлин – доцент кафедры автоматизации проектирования Томского политехнического университета.
Темплан 2000
© Томский политехнический университет, 2000
- Ю. Я. Кацман прикладная математика Численные методы
- Оглавление
- 4.1. Постановка задачи 33
- 1. Элементы теории погрешностей
- Вопросы для самопроверки
- 2. Численное интегрирование
- 2.1. Постановка задачи
- 2.2. Формула прямоугольников
- 2.3. Формула трапеций
- 2.4. Формула Симпсона
- 2.5. Вычисление определенных интегралов методами Монте–Карло
- Вопросы для самопроверки
- Численное решение систем линейных алгебраических уравнений (слау)
- 3.1. Решение задач линейной алгебры
- 3.2. Метод Гаусса
- 3.3. Схема Гаусса с выбором главного элемента
- 3.4. Вычисление обратной матрицы методом Гаусса
- 3.5. Вычисление определителей методом Гаусса
- 3.6. Метод простой итерации (метод Якоби)
- 3.7. Метод Зейделя
- 3.8. Метод скорейшего спуска (градиента) для случая системы линейных алгебраических уравнений
- Вопросы для самопроверки
- 4. Приближенное решение нелинейных и трансцендентных уравнений
- 4.1. Постановка задачи
- 4.2. Графическое решение уравнений
- 4.3. Метод половинного деления (дихотомии)
- 4.4. Метод хорд
- 4.5. Метод Ньютона (метод касательных)
- 4.6. Комбинированный метод
- Вопросы для самопроверки
- 5. Приближенное решение систем нелинейных уравнений
- 5.1. Метод Ньютона
- 5.2. Метод градиента (метод скорейшего спуска)
- Вопросы для самопроверки
- 6. Решение обыкновенных дифференциальных уравнений
- 6.1. Методы решения задачи Коши
- 6.2. Метод рядов, не требующий вычисления производных правой части уравнения
- 6.3. Метод Рунге-Кутта
- 6.4. Многошаговые методы
- 6.5. Экстраполяционные методы Адамса
- 6.6. Интерполяционные методы Адамса
- Вопросы для самопроверки
- 7. Интерполирование и приближение функций
- 7.1. Задача интерполирования и аппроксимации функций
- 7.2. Интерполирование алгебраическими многочленами
- 7.3. Интерполяционная формула Ньютона
- 7.4. Сходимость интерполяционного процесса
- 7.5. Задача обратного интерполирования
- 7.6. Отыскание параметров эмпирических формул методом наименьших квадратов
- 7.7. Суть метода наименьших квадратов
- Основные свойства матрицы Грама
- Вопросы для самопроверки
- Литература
- Прикладная математика Численные методы