3.7. Метод Зейделя
Этот метод представляет собой некоторую модификацию метода простой итерации. Основная его идея заключается в том, что при вычислении (k+1)-го приближения неизвестной xi учитываются уже вычисленные ранее (k+1)-е приближения (x1 x2, ..., xi-1).
Пусть дана приведенная линейная система:
(i = 1, 2, …n). (3.35)
Выберем произвольно начальные приближения корней , стараясь, конечно, чтобы они в какой-то мере соответствовали неизвестным x1, x2, x3, ..., xn.
Предположим, что k-е приближение корней известно, тогда в соответствии с идеей метода будем строить (k+1) – е приближение по следующим формулам:
(3.36)
(k = 0, 1, 2,...).
Обычно процесс Зейделя сходится быстрее, чем метод Якоби. Бывает, что процесс Зейделя сходится, когда простая итерация расходится и, т.п. Правда, бывает и наоборот. Во всяком случае, достаточные условия сходимости для метода Якоби достаточны и для сходимости метода Зейделя. Если выполняется достаточное условие сходимости для системы (3.35) – по строкам, то в методе Зейделя выгодно расположить уравнения (3.36) так, чтобы первое уравнение системы имело наименьшую сумму модулей коэффициентов:
. (3.37)
Пример 3.6.
Для того чтобы обеспечить достаточные условия сходимости итерационного процесса (преобладающие значения диагональных элементов), преобразуем исходную систему и приведем к удобному виду. Чтобы дальнейшие преобразования были понятны, обозначим уравнения исходной системы буквами А, Б, В и Г соответственно:
х1= -0.2х2 +0.1х3 – 0.2х4 – 0.4; (Г)
х2 = -0.2х1 – 0.2х3 + 0.2; (А – Б)
х3 = 0.2х1 – 0.4х2 + 0.2х4 – 0.4; (Б)
х4 = 0.333х1 - 1.111. (2А – Б + 2В – Г)
Преобразованную систему будем решать методом Зейделя, тогда, с учетом требования (3.37), окончательно получим:
В качестве нулевого приближения (k = 0) возьмем . Зададим количество итераций k = 2 и все результаты вычислений сведем в табл. 3.1.
Таблица 3.1
Итерация, k | Значения неизвестных | Невязки | ||||||
x1 | x2 | x3 | x4 | ε1 | ε2 | ε3 | ε4 | |
0 | -0.4 | 0.2 | -0.4 | -1.111 | -2.711 | -1.911 | 0.444 | -1.422 |
1 | -0.263 | 0.36 | -0.846 | -1.244 | -0.309 | 1.0 | 0.734 | 0.446 |
2 | -0.329 | 0.422 | -0.874 | -1.199 | 0.095 | -0.000 | 0.009 | 0.029 |
В приведенной таблице кроме значений неизвестных на каждом шаге оценивались невязки. Вспомним, что корнями уравнения называются такие значения неизвестных, которые превращают его в тождество. Так как мы используем итерационный (приближенный) метод, значения неизвестных вычисляем приближенно (три, четыре знака после десятичной точки), то, подставляя значения неизвестных в исходную систему, справа получим не ноль, а некоторые значения, называемые невязкой первого, второго, … уравнений на k –ом шаге.
Анализ данных, приведенных в табл. 3.1, показывает, что итерационный процесс быстро сходится, о чем свидетельствуют как быстрое уменьшение невязок, так и уменьшение изменений неизвестных (см. формулу (3.31) метода Якоби).
Yandex.RTB R-A-252273-3
- Ю. Я. Кацман прикладная математика Численные методы
- Оглавление
- 4.1. Постановка задачи 33
- 1. Элементы теории погрешностей
- Вопросы для самопроверки
- 2. Численное интегрирование
- 2.1. Постановка задачи
- 2.2. Формула прямоугольников
- 2.3. Формула трапеций
- 2.4. Формула Симпсона
- 2.5. Вычисление определенных интегралов методами Монте–Карло
- Вопросы для самопроверки
- Численное решение систем линейных алгебраических уравнений (слау)
- 3.1. Решение задач линейной алгебры
- 3.2. Метод Гаусса
- 3.3. Схема Гаусса с выбором главного элемента
- 3.4. Вычисление обратной матрицы методом Гаусса
- 3.5. Вычисление определителей методом Гаусса
- 3.6. Метод простой итерации (метод Якоби)
- 3.7. Метод Зейделя
- 3.8. Метод скорейшего спуска (градиента) для случая системы линейных алгебраических уравнений
- Вопросы для самопроверки
- 4. Приближенное решение нелинейных и трансцендентных уравнений
- 4.1. Постановка задачи
- 4.2. Графическое решение уравнений
- 4.3. Метод половинного деления (дихотомии)
- 4.4. Метод хорд
- 4.5. Метод Ньютона (метод касательных)
- 4.6. Комбинированный метод
- Вопросы для самопроверки
- 5. Приближенное решение систем нелинейных уравнений
- 5.1. Метод Ньютона
- 5.2. Метод градиента (метод скорейшего спуска)
- Вопросы для самопроверки
- 6. Решение обыкновенных дифференциальных уравнений
- 6.1. Методы решения задачи Коши
- 6.2. Метод рядов, не требующий вычисления производных правой части уравнения
- 6.3. Метод Рунге-Кутта
- 6.4. Многошаговые методы
- 6.5. Экстраполяционные методы Адамса
- 6.6. Интерполяционные методы Адамса
- Вопросы для самопроверки
- 7. Интерполирование и приближение функций
- 7.1. Задача интерполирования и аппроксимации функций
- 7.2. Интерполирование алгебраическими многочленами
- 7.3. Интерполяционная формула Ньютона
- 7.4. Сходимость интерполяционного процесса
- 7.5. Задача обратного интерполирования
- 7.6. Отыскание параметров эмпирических формул методом наименьших квадратов
- 7.7. Суть метода наименьших квадратов
- Основные свойства матрицы Грама
- Вопросы для самопроверки
- Литература
- Прикладная математика Численные методы