4.6. Комбинированный метод
Пусть f(a)·f(b) < 0, а f(x) и f(x) сохраняют постоянные знаки на отрезке [a¸ b]. Соединяя метод хорд и метод касательных, получаем метод, на каждом шаге которого находим значения по недостатку и значения по избытку точного корня ξ уравнения f(x) = 0. Теоретически здесь возможны четыре случая:
f(x) > 0; f(x) > 0;
f(x) > 0; f(x) < 0;
f(x) < 0; f(x) > 0;
f(x) < 0; f(x) < 0.
Рассмотрим только первый случай, так как остальные три ведут себя аналогично и могут быть сведены к первому.
Итак, пусть f(x) > 0 и f(x) > 0 при . Полагаем, что (для метода хорд), (для метода касательных). Тогда новые значения корня вычисляем по формулам
(4.18)
Рис. 4.4 наглядно иллюстрирует суть комбинированного метода.
Рис. 4.4. Уточнение корня комбинированным методом
Доказано, что . Следует обратить внимание на то, что на каждом шаге метод хорд применяется к новому отрезку . Если задать максимальное значение погрешности ε > 0, процесс уточнения значения корня продолжаем до тех пор, пока не выполнится условие
. (4.19)
Пример 4.1. Вычислить с точностью до 0.0005 положительный корень уравнения
f(x) = x5 – x – 0.2 = 0.
На первом этапе отделения корней выбрали интервал [1.0, 1.1], на концах которого функция имеет противоположные знаки. Действительно, f(1) = – 0.2 < 0, f(1.1) = 0.31051 > 0. В выбранном нами интервале f(x) > 0, f(x) > 0, то есть знаки производных сохраняются.
Применим комбинированный метод, приняв . По формулам (4.18) вычислим
.
Так как точность недостаточная (погрешность велика), вычислим следующие значения:
Таким образом, за два шага мы обеспечили требуемую точность.
Замечания
Комбинированный метод наиболее трудоемок.
Метод, как и метод Ньютона не всегда сходится (почему?).
Комбинированный метод сходится быстрее всех ранее рассмотренных, (если он сходится).
Yandex.RTB R-A-252273-3
- Ю. Я. Кацман прикладная математика Численные методы
- Оглавление
- 4.1. Постановка задачи 33
- 1. Элементы теории погрешностей
- Вопросы для самопроверки
- 2. Численное интегрирование
- 2.1. Постановка задачи
- 2.2. Формула прямоугольников
- 2.3. Формула трапеций
- 2.4. Формула Симпсона
- 2.5. Вычисление определенных интегралов методами Монте–Карло
- Вопросы для самопроверки
- Численное решение систем линейных алгебраических уравнений (слау)
- 3.1. Решение задач линейной алгебры
- 3.2. Метод Гаусса
- 3.3. Схема Гаусса с выбором главного элемента
- 3.4. Вычисление обратной матрицы методом Гаусса
- 3.5. Вычисление определителей методом Гаусса
- 3.6. Метод простой итерации (метод Якоби)
- 3.7. Метод Зейделя
- 3.8. Метод скорейшего спуска (градиента) для случая системы линейных алгебраических уравнений
- Вопросы для самопроверки
- 4. Приближенное решение нелинейных и трансцендентных уравнений
- 4.1. Постановка задачи
- 4.2. Графическое решение уравнений
- 4.3. Метод половинного деления (дихотомии)
- 4.4. Метод хорд
- 4.5. Метод Ньютона (метод касательных)
- 4.6. Комбинированный метод
- Вопросы для самопроверки
- 5. Приближенное решение систем нелинейных уравнений
- 5.1. Метод Ньютона
- 5.2. Метод градиента (метод скорейшего спуска)
- Вопросы для самопроверки
- 6. Решение обыкновенных дифференциальных уравнений
- 6.1. Методы решения задачи Коши
- 6.2. Метод рядов, не требующий вычисления производных правой части уравнения
- 6.3. Метод Рунге-Кутта
- 6.4. Многошаговые методы
- 6.5. Экстраполяционные методы Адамса
- 6.6. Интерполяционные методы Адамса
- Вопросы для самопроверки
- 7. Интерполирование и приближение функций
- 7.1. Задача интерполирования и аппроксимации функций
- 7.2. Интерполирование алгебраическими многочленами
- 7.3. Интерполяционная формула Ньютона
- 7.4. Сходимость интерполяционного процесса
- 7.5. Задача обратного интерполирования
- 7.6. Отыскание параметров эмпирических формул методом наименьших квадратов
- 7.7. Суть метода наименьших квадратов
- Основные свойства матрицы Грама
- Вопросы для самопроверки
- Литература
- Прикладная математика Численные методы