3.4. Вычисление обратной матрицы методом Гаусса
Пусть дана неособенная матрица
A = [aij] (i,j = 1,2, ..., n). (3.19)
Необходимо найти её обратную матрицу
A-1 = [xij] (i,j = 1,2, ..., n). (3.20)
Вспомним основное соотношение линейной алгебры:
A·A-1 = E, (3.21)
где Е – единичная матрица.
Перемножая матрицы A и A-1, получаем n2 уравнений относительно n2 неизвестных xij:
(i,j = 1, 2, ..., n), (3.22)
где
Таким образом, получим n систем линейных уравнений для j = 1, 2, ..., n, имеющих одну и ту же матрицу коэффициентов A и различные столбцы - свободные члены, которые можно одновременно решить методом Гаусса.
Рассмотрим это подробнее, вычислив матрицу, обратную :
Разделив все коэффициенты первой строки на a11 = 2, получим первую главную строку (обратите внимание, что с n столбцами свободных членов проводятся те же действия, что и с одним):
1.0 0.5 -0.05 0.5 0.5 0 0 0
1.0 13.4 -29 -0.6667 3.333 0 0
.
Для проверки перемножим полученную обратную матрицу и исходную (должны получить единичную):
.
Благодаря округлению, убеждаемся, что обратная матрица вычислена неточно. В дальнейшем можно показать, как методом простой итерации можно уточнить A-1.
Yandex.RTB R-A-252273-3
- Ю. Я. Кацман прикладная математика Численные методы
- Оглавление
- 4.1. Постановка задачи 33
- 1. Элементы теории погрешностей
- Вопросы для самопроверки
- 2. Численное интегрирование
- 2.1. Постановка задачи
- 2.2. Формула прямоугольников
- 2.3. Формула трапеций
- 2.4. Формула Симпсона
- 2.5. Вычисление определенных интегралов методами Монте–Карло
- Вопросы для самопроверки
- Численное решение систем линейных алгебраических уравнений (слау)
- 3.1. Решение задач линейной алгебры
- 3.2. Метод Гаусса
- 3.3. Схема Гаусса с выбором главного элемента
- 3.4. Вычисление обратной матрицы методом Гаусса
- 3.5. Вычисление определителей методом Гаусса
- 3.6. Метод простой итерации (метод Якоби)
- 3.7. Метод Зейделя
- 3.8. Метод скорейшего спуска (градиента) для случая системы линейных алгебраических уравнений
- Вопросы для самопроверки
- 4. Приближенное решение нелинейных и трансцендентных уравнений
- 4.1. Постановка задачи
- 4.2. Графическое решение уравнений
- 4.3. Метод половинного деления (дихотомии)
- 4.4. Метод хорд
- 4.5. Метод Ньютона (метод касательных)
- 4.6. Комбинированный метод
- Вопросы для самопроверки
- 5. Приближенное решение систем нелинейных уравнений
- 5.1. Метод Ньютона
- 5.2. Метод градиента (метод скорейшего спуска)
- Вопросы для самопроверки
- 6. Решение обыкновенных дифференциальных уравнений
- 6.1. Методы решения задачи Коши
- 6.2. Метод рядов, не требующий вычисления производных правой части уравнения
- 6.3. Метод Рунге-Кутта
- 6.4. Многошаговые методы
- 6.5. Экстраполяционные методы Адамса
- 6.6. Интерполяционные методы Адамса
- Вопросы для самопроверки
- 7. Интерполирование и приближение функций
- 7.1. Задача интерполирования и аппроксимации функций
- 7.2. Интерполирование алгебраическими многочленами
- 7.3. Интерполяционная формула Ньютона
- 7.4. Сходимость интерполяционного процесса
- 7.5. Задача обратного интерполирования
- 7.6. Отыскание параметров эмпирических формул методом наименьших квадратов
- 7.7. Суть метода наименьших квадратов
- Основные свойства матрицы Грама
- Вопросы для самопроверки
- Литература
- Прикладная математика Численные методы