3.3. Схема Гаусса с выбором главного элемента
Рассмотрим СЛАУ
(3.17)
Запишем расширенную прямоугольную матрицу коэффициентов системы (3.17):
. (3.18)
Среди элементов матрицы aij (i,j = 1, ...n) выберем наибольший по модулю, называемый главным элементом. Пусть им будет, например, элемент apq. Строка, содержащая главный элемент, называется главной строкой.
Далее вычисляем множители mi = aiq / apq для всех i p.Затем преобразуем матрицу (3.18) следующим образом: из каждой i-ой неглавной строки вычитаем почленно главную строку, умноженную на mi. В результате получим матрицу, у которой все элементы q-го столбца за исключением apq, равны 0. Отбрасывая этот столбец и главную строку, получим новую матрицу M1 с числом строк и столбцов на 1 меньше.
Над матрицей М1 повторяем те же операции, после чего получим матрицу M2 и т.д. Таким образом продолжаем до тех пор, пока не получим матрицу, содержащую одну строку из двух элементов, которую тоже считаем главной.
Затем объединим все главные строки, начиная с последней. После некоторой перестановки они образуют треугольную матрицу, эквивалентную исходной. На этом заканчивается этап вычислений, называемый прямым ходом. Решив систему с полученной треугольной матрицей коэффициентов, найдём последовательно значения неизвестных xi (i = 1, 2, ..., n). На этом заканчивается обратный ход.
Смысл выбора главного элемента состоит в том, чтобы сделать возможно меньшими числа mi и тем самым уменьшить погрешность вычислений.
Пример 3.4. Рассмотрим СЛАУ, состоящую из трех уравнений. Запишем расширенную матрицу
m2 = -1/6; m3 = -2/3.
m2 = -5/16.
M2 = [ 87/96 174/32].
x3 = 6; x1 = 3; x2 = -2.
Yandex.RTB R-A-252273-3
- Ю. Я. Кацман прикладная математика Численные методы
- Оглавление
- 4.1. Постановка задачи 33
- 1. Элементы теории погрешностей
- Вопросы для самопроверки
- 2. Численное интегрирование
- 2.1. Постановка задачи
- 2.2. Формула прямоугольников
- 2.3. Формула трапеций
- 2.4. Формула Симпсона
- 2.5. Вычисление определенных интегралов методами Монте–Карло
- Вопросы для самопроверки
- Численное решение систем линейных алгебраических уравнений (слау)
- 3.1. Решение задач линейной алгебры
- 3.2. Метод Гаусса
- 3.3. Схема Гаусса с выбором главного элемента
- 3.4. Вычисление обратной матрицы методом Гаусса
- 3.5. Вычисление определителей методом Гаусса
- 3.6. Метод простой итерации (метод Якоби)
- 3.7. Метод Зейделя
- 3.8. Метод скорейшего спуска (градиента) для случая системы линейных алгебраических уравнений
- Вопросы для самопроверки
- 4. Приближенное решение нелинейных и трансцендентных уравнений
- 4.1. Постановка задачи
- 4.2. Графическое решение уравнений
- 4.3. Метод половинного деления (дихотомии)
- 4.4. Метод хорд
- 4.5. Метод Ньютона (метод касательных)
- 4.6. Комбинированный метод
- Вопросы для самопроверки
- 5. Приближенное решение систем нелинейных уравнений
- 5.1. Метод Ньютона
- 5.2. Метод градиента (метод скорейшего спуска)
- Вопросы для самопроверки
- 6. Решение обыкновенных дифференциальных уравнений
- 6.1. Методы решения задачи Коши
- 6.2. Метод рядов, не требующий вычисления производных правой части уравнения
- 6.3. Метод Рунге-Кутта
- 6.4. Многошаговые методы
- 6.5. Экстраполяционные методы Адамса
- 6.6. Интерполяционные методы Адамса
- Вопросы для самопроверки
- 7. Интерполирование и приближение функций
- 7.1. Задача интерполирования и аппроксимации функций
- 7.2. Интерполирование алгебраическими многочленами
- 7.3. Интерполяционная формула Ньютона
- 7.4. Сходимость интерполяционного процесса
- 7.5. Задача обратного интерполирования
- 7.6. Отыскание параметров эмпирических формул методом наименьших квадратов
- 7.7. Суть метода наименьших квадратов
- Основные свойства матрицы Грама
- Вопросы для самопроверки
- Литература
- Прикладная математика Численные методы