6.1. Методы решения задачи Коши
Среди задач, с которыми приходится иметь дело в вычислительной практике, значительную часть составляют различные задачи, сводящиеся к решению обыкновенных дифференциальных уравнений. Обычно приходится прибегать к помощи приближенных методов решения подобных задач. В случае обыкновенных дифференциальных уравнений в зависимости от того, ставятся ли дополнительные условия в одной или нескольких точках отрезка изменения независимой переменной, задачи обычно подразделяются на одноточечные (задачи с начальными условиями или задачи Коши) и многоточечные. Среди многоточечных задач наиболее часто в прикладных вопросах встречаются так называемые граничные задачи, когда дополнительные условия ставятся на концах рассматриваемого отрезка.
В дальнейшем ограничимся рассмотрением численных методов решения задачи Коши. Для простоты изложения методов решения задачи будем рассматривать случай одного обыкновенного дифференциального уравнения первого порядка.
Пусть на отрезке x0 x b требуется найти решение y(x) дифференциального уравнения
, (6.1)
удовлетворяющее при x = x0 начальному условию
(6.2)
Будем считать, что условия существования и единственности решения поставленной задачи Коши выполнены.
На практике найти общее либо частное решение задачи Коши удается крайне редко, поэтому приходится решать эту задачу приближенно. Отрезок [x0, b] накрывается сеткой (разбивается на интервалы) чаще всего с постоянным шагом h ( h = xn+1 - xn ), и по какому-то решающему правилу находится значение yn+1 = y(xn+1). Таким образом, в качестве решения задачи Коши численными методами мы получаем таблицу, состоящую из двух векторов: x = (x0 , x1 , …xn) – вектора аргументов и соответствующего ему вектора функции y = ( y0 , y1,… yn ).
Численные методы (правила), в которых для нахождения значения функции в новой точке используется информация только об одной (предыдущей) точке, называются одношаговыми.
Численные методы (правила), в которых для нахождения значения функции в новой точке используется информация о нескольких (предыдущих) точках, называются многошаговыми.
Из общего курса обыкновенных дифференциальных уравнений широкое распространение получил аналитический метод, основанный на идее разложения в ряд решения рассматриваемой задачи Коши. Особенно часто для этих целей используется ряд Тейлора. В этом случае вычислительные правила строятся особенно просто. При этом приближенное решение ym(x) исходной задачи ищут в виде
(6.3)
Здесь а значения i = 2, 3,…m находят по формулам, полученным последовательным дифференцированием уравнения (6.1):
(6.4)
Для значений x, близких к x0, метод рядов (6.3) при достаточно большом значении m дает обычно хорошее приближение к точному решению y(x) задачи (6.1). Однако с ростом расстояния x - x0 погрешность приближенного равенства y(x) ym(x), вообще говоря, возрастает по абсолютной величине, и правило (6.3) становится вовсе неприемлемым, когда x выходит из области сходимости соответствующего ряда (6.3) Тейлора.
Если в выражении (6.3) ограничиться m = 1, то для вычисления новых значений y(x) нет необходимости пересчитывать значение производной, правда и точность решения будет невысока. Графическая интерпретация этого метода приведена на рис. 6.1.
Рис. 6.1. Разложение функции в ряд Тейлора (m=1)
Yandex.RTB R-A-252273-3
- Ю. Я. Кацман прикладная математика Численные методы
- Оглавление
- 4.1. Постановка задачи 33
- 1. Элементы теории погрешностей
- Вопросы для самопроверки
- 2. Численное интегрирование
- 2.1. Постановка задачи
- 2.2. Формула прямоугольников
- 2.3. Формула трапеций
- 2.4. Формула Симпсона
- 2.5. Вычисление определенных интегралов методами Монте–Карло
- Вопросы для самопроверки
- Численное решение систем линейных алгебраических уравнений (слау)
- 3.1. Решение задач линейной алгебры
- 3.2. Метод Гаусса
- 3.3. Схема Гаусса с выбором главного элемента
- 3.4. Вычисление обратной матрицы методом Гаусса
- 3.5. Вычисление определителей методом Гаусса
- 3.6. Метод простой итерации (метод Якоби)
- 3.7. Метод Зейделя
- 3.8. Метод скорейшего спуска (градиента) для случая системы линейных алгебраических уравнений
- Вопросы для самопроверки
- 4. Приближенное решение нелинейных и трансцендентных уравнений
- 4.1. Постановка задачи
- 4.2. Графическое решение уравнений
- 4.3. Метод половинного деления (дихотомии)
- 4.4. Метод хорд
- 4.5. Метод Ньютона (метод касательных)
- 4.6. Комбинированный метод
- Вопросы для самопроверки
- 5. Приближенное решение систем нелинейных уравнений
- 5.1. Метод Ньютона
- 5.2. Метод градиента (метод скорейшего спуска)
- Вопросы для самопроверки
- 6. Решение обыкновенных дифференциальных уравнений
- 6.1. Методы решения задачи Коши
- 6.2. Метод рядов, не требующий вычисления производных правой части уравнения
- 6.3. Метод Рунге-Кутта
- 6.4. Многошаговые методы
- 6.5. Экстраполяционные методы Адамса
- 6.6. Интерполяционные методы Адамса
- Вопросы для самопроверки
- 7. Интерполирование и приближение функций
- 7.1. Задача интерполирования и аппроксимации функций
- 7.2. Интерполирование алгебраическими многочленами
- 7.3. Интерполяционная формула Ньютона
- 7.4. Сходимость интерполяционного процесса
- 7.5. Задача обратного интерполирования
- 7.6. Отыскание параметров эмпирических формул методом наименьших квадратов
- 7.7. Суть метода наименьших квадратов
- Основные свойства матрицы Грама
- Вопросы для самопроверки
- Литература
- Прикладная математика Численные методы