7.7. Суть метода наименьших квадратов
Дальнейшие рассуждения будем проводить в предположении, что все измерения значений функции y0, y1, y2,…, yn произведены с одинаковой точностью. Тогда оценка параметров а0, а1, а2,…, аn определяется из условия минимума суммы квадратов отклонений измеренных значений yk от расчетных f(xk; а0, а1, а2,…, аn):
(7.14)
Отыскание же значений параметров а0, а1, а2,…, аn, которые доставляют min значение функции
(7.15)
сводится к решению системы уравнений
(7.16)
Наиболее распространен способ выбора функции f(xk; а0, а1, а2,…, аn) в виде линейной комбинации:
(7.17)
Здесь базисные функции (известные); n << k; а0, а1, а2,…, аn – коэффициенты, определяемые методом наименьших квадратов. Запишем в явном виде условие (7.16), учитывая выражение (7.17):
(7.18)
Из системы линейных уравнений (7.18) определяются все коэффициенты ak. Система (7.18) называется системой нормальных уравнений, матрица которой имеет вид
(7.19)
Здесь
(7.20)
Матрица (7.19) называется матрицей Грама. Расширенную матрицу получим добавлением справа столбца свободных членов:
(7.21),
где (7.22)
Yandex.RTB R-A-252273-3
- Ю. Я. Кацман прикладная математика Численные методы
- Оглавление
- 4.1. Постановка задачи 33
- 1. Элементы теории погрешностей
- Вопросы для самопроверки
- 2. Численное интегрирование
- 2.1. Постановка задачи
- 2.2. Формула прямоугольников
- 2.3. Формула трапеций
- 2.4. Формула Симпсона
- 2.5. Вычисление определенных интегралов методами Монте–Карло
- Вопросы для самопроверки
- Численное решение систем линейных алгебраических уравнений (слау)
- 3.1. Решение задач линейной алгебры
- 3.2. Метод Гаусса
- 3.3. Схема Гаусса с выбором главного элемента
- 3.4. Вычисление обратной матрицы методом Гаусса
- 3.5. Вычисление определителей методом Гаусса
- 3.6. Метод простой итерации (метод Якоби)
- 3.7. Метод Зейделя
- 3.8. Метод скорейшего спуска (градиента) для случая системы линейных алгебраических уравнений
- Вопросы для самопроверки
- 4. Приближенное решение нелинейных и трансцендентных уравнений
- 4.1. Постановка задачи
- 4.2. Графическое решение уравнений
- 4.3. Метод половинного деления (дихотомии)
- 4.4. Метод хорд
- 4.5. Метод Ньютона (метод касательных)
- 4.6. Комбинированный метод
- Вопросы для самопроверки
- 5. Приближенное решение систем нелинейных уравнений
- 5.1. Метод Ньютона
- 5.2. Метод градиента (метод скорейшего спуска)
- Вопросы для самопроверки
- 6. Решение обыкновенных дифференциальных уравнений
- 6.1. Методы решения задачи Коши
- 6.2. Метод рядов, не требующий вычисления производных правой части уравнения
- 6.3. Метод Рунге-Кутта
- 6.4. Многошаговые методы
- 6.5. Экстраполяционные методы Адамса
- 6.6. Интерполяционные методы Адамса
- Вопросы для самопроверки
- 7. Интерполирование и приближение функций
- 7.1. Задача интерполирования и аппроксимации функций
- 7.2. Интерполирование алгебраическими многочленами
- 7.3. Интерполяционная формула Ньютона
- 7.4. Сходимость интерполяционного процесса
- 7.5. Задача обратного интерполирования
- 7.6. Отыскание параметров эмпирических формул методом наименьших квадратов
- 7.7. Суть метода наименьших квадратов
- Основные свойства матрицы Грама
- Вопросы для самопроверки
- Литература
- Прикладная математика Численные методы