3.6. Метод простой итерации (метод Якоби)
Рассмотрим систему
A·x = f, (3.27)
где матрица A = [aij] (i,j = 1, 2, …m) имеет обратную матрицу; x = (x1, x2, x3,…xm) – вектор неизвестных, f – вектор свободных членов.
Преобразуем систему (3.27) к следующему виду:
(i = 1, 2, …m), (3.28)
где , , при этом предполагаем, что .
Условимся, как обычно, считать значение суммы равным нулю, если верхний предел суммирования меньше нижнего. Тогда при i = 1 уравнение (3.28) имеет вид
(3.29)
В методе простой итерации (методе Якоби) исходят из записи системы в виде (3.28), итерации при этом определяют следующим образом:
(3.30)
Начальные значения – (i = 0, 1, … m) задаются произвольно. Окончание итерационного процесса определяют либо заданием максимального числа итераций n0, либо следующим условием:
(3.31)
где ε > 0.
В качестве нулевого приближения в системе (3.30) примем
. (3.32)
Если последовательность приближений x1(0), x2(0), ..., xm(0), x1(1), x2(1), ..., xm(1), ..., x1(k), x2(k), ..., xm(k) имеет предел
, (3.33)
то этот предел является решением системы (3.28).
Достаточным условием сходимости решения системы (3.27) является то, что матрица A является матрицей с преобладающими диагональными элементами, то есть
(3.34)
- Ю. Я. Кацман прикладная математика Численные методы
- Оглавление
- 4.1. Постановка задачи 33
- 1. Элементы теории погрешностей
- Вопросы для самопроверки
- 2. Численное интегрирование
- 2.1. Постановка задачи
- 2.2. Формула прямоугольников
- 2.3. Формула трапеций
- 2.4. Формула Симпсона
- 2.5. Вычисление определенных интегралов методами Монте–Карло
- Вопросы для самопроверки
- Численное решение систем линейных алгебраических уравнений (слау)
- 3.1. Решение задач линейной алгебры
- 3.2. Метод Гаусса
- 3.3. Схема Гаусса с выбором главного элемента
- 3.4. Вычисление обратной матрицы методом Гаусса
- 3.5. Вычисление определителей методом Гаусса
- 3.6. Метод простой итерации (метод Якоби)
- 3.7. Метод Зейделя
- 3.8. Метод скорейшего спуска (градиента) для случая системы линейных алгебраических уравнений
- Вопросы для самопроверки
- 4. Приближенное решение нелинейных и трансцендентных уравнений
- 4.1. Постановка задачи
- 4.2. Графическое решение уравнений
- 4.3. Метод половинного деления (дихотомии)
- 4.4. Метод хорд
- 4.5. Метод Ньютона (метод касательных)
- 4.6. Комбинированный метод
- Вопросы для самопроверки
- 5. Приближенное решение систем нелинейных уравнений
- 5.1. Метод Ньютона
- 5.2. Метод градиента (метод скорейшего спуска)
- Вопросы для самопроверки
- 6. Решение обыкновенных дифференциальных уравнений
- 6.1. Методы решения задачи Коши
- 6.2. Метод рядов, не требующий вычисления производных правой части уравнения
- 6.3. Метод Рунге-Кутта
- 6.4. Многошаговые методы
- 6.5. Экстраполяционные методы Адамса
- 6.6. Интерполяционные методы Адамса
- Вопросы для самопроверки
- 7. Интерполирование и приближение функций
- 7.1. Задача интерполирования и аппроксимации функций
- 7.2. Интерполирование алгебраическими многочленами
- 7.3. Интерполяционная формула Ньютона
- 7.4. Сходимость интерполяционного процесса
- 7.5. Задача обратного интерполирования
- 7.6. Отыскание параметров эмпирических формул методом наименьших квадратов
- 7.7. Суть метода наименьших квадратов
- Основные свойства матрицы Грама
- Вопросы для самопроверки
- Литература
- Прикладная математика Численные методы