4.4. Метод хорд
Пусть дано уравнение
f(x) = 0, (4.4)
где функция f(x) определена и непрерывна на интервале [a, b] и выполняется соотношение f(a)·f(b) < 0.
Пусть для определенности f(a) < 0, f(b) > 0. Тогда вместо того, чтобы делить отрезок [a, b] пополам, более естественно разделить его в отношении - f(a):f(b). При этом новое значение корня определяется из соотношения
x1 = a + h1, (4.5)
где
. (4.6)
Далее этот прием применяем к одному из отрезков [a, x1] или [x1, b], на концах которого функция f(x) имеет противоположные знаки. Аналогично находим второе приближение x2 и т.д. (см. рис. 4.2.).
Геометрически этот способ эквивалентен замене кривой y = f(x) хордой, проходящей через точки А(a, f(a)) и B(b, f(b)).
Рис. 4.2. Уточнение корня уравнения методом хорд
Действительно, уравнение хорды АВ имеет вид
(4.7)
Учитывая, что при х = х1 => y = 0, получим
(4.8)
Полагая, что на отрезке [a, b] вторая производная f''(x) сохраняет постоянный знак, метод хорд сводится к двум различным вариантам:
Из рис. 4.2,a видно, что неподвижна точка а, а точка b приближается к ξ, то есть
(4.9)
Преобразовав выражение (4.9), окончательно получим
(4.10)
Из рис. 4.2,b видно, что точка b остается неподвижной, а точка а приближается к ξ, тогда вычислительная формула примет вид
(4.11)
Таким образом, для вычисления корня уравнения имеем две различные вычислительные формулы (4.10) и (4.11).
Какую точку брать за неподвижную?
Рекомендуется в качестве неподвижной выбирать ту точку, в которой выполняется соотношение
f(x)·f”(x) > 0. (4.12)
- Ю. Я. Кацман прикладная математика Численные методы
- Оглавление
- 4.1. Постановка задачи 33
- 1. Элементы теории погрешностей
- Вопросы для самопроверки
- 2. Численное интегрирование
- 2.1. Постановка задачи
- 2.2. Формула прямоугольников
- 2.3. Формула трапеций
- 2.4. Формула Симпсона
- 2.5. Вычисление определенных интегралов методами Монте–Карло
- Вопросы для самопроверки
- Численное решение систем линейных алгебраических уравнений (слау)
- 3.1. Решение задач линейной алгебры
- 3.2. Метод Гаусса
- 3.3. Схема Гаусса с выбором главного элемента
- 3.4. Вычисление обратной матрицы методом Гаусса
- 3.5. Вычисление определителей методом Гаусса
- 3.6. Метод простой итерации (метод Якоби)
- 3.7. Метод Зейделя
- 3.8. Метод скорейшего спуска (градиента) для случая системы линейных алгебраических уравнений
- Вопросы для самопроверки
- 4. Приближенное решение нелинейных и трансцендентных уравнений
- 4.1. Постановка задачи
- 4.2. Графическое решение уравнений
- 4.3. Метод половинного деления (дихотомии)
- 4.4. Метод хорд
- 4.5. Метод Ньютона (метод касательных)
- 4.6. Комбинированный метод
- Вопросы для самопроверки
- 5. Приближенное решение систем нелинейных уравнений
- 5.1. Метод Ньютона
- 5.2. Метод градиента (метод скорейшего спуска)
- Вопросы для самопроверки
- 6. Решение обыкновенных дифференциальных уравнений
- 6.1. Методы решения задачи Коши
- 6.2. Метод рядов, не требующий вычисления производных правой части уравнения
- 6.3. Метод Рунге-Кутта
- 6.4. Многошаговые методы
- 6.5. Экстраполяционные методы Адамса
- 6.6. Интерполяционные методы Адамса
- Вопросы для самопроверки
- 7. Интерполирование и приближение функций
- 7.1. Задача интерполирования и аппроксимации функций
- 7.2. Интерполирование алгебраическими многочленами
- 7.3. Интерполяционная формула Ньютона
- 7.4. Сходимость интерполяционного процесса
- 7.5. Задача обратного интерполирования
- 7.6. Отыскание параметров эмпирических формул методом наименьших квадратов
- 7.7. Суть метода наименьших квадратов
- Основные свойства матрицы Грама
- Вопросы для самопроверки
- Литература
- Прикладная математика Численные методы