7.2. Интерполирование алгебраическими многочленами
Пусть функциональная зависимость задана таблицей y0 = f(x0);…, y1= f(x1);…,yn = f(xn). Обычно задача интерполирования формулируется так: найти многочлен P(x) = Pn(x) степени не выше n, значения которого в точках xi (i = 0, 1 2,…, n) совпадают со значениями данной функции, то есть P(xi) = yi.
Геометрически это означает, что нужно найти алгебраическую кривую вида
(7.1)
проходящую через заданную систему точек Мi(xi,yi) (см. рис. 7.1). Многочлен Р(х) называется интерполяционным многочленом. Точки xi (i = 0, 1, 2,…, n) называются узлами интерполяции.
Рис. 7.1. Интерполирование алгебраическим многочленом
Для любой непрерывной функции f(x) сформулированная задача имеет единственное решение. Действительно, для отыскания коэффициентов а0, а1, а2 ,…, аn получаем систему линейных уравнений
(7.2)
определитель которой (определитель Вандермонда) отличен от нуля, если среди точек xi (i = 0, 1, 2,…, n) нет совпадающих.
Решение системы (7.2) можно записать различным образом. Однако наиболее употребительна запись интерполяционного многочлена в форме Лагранжа и в форме Ньютона.
Запишем без вывода интерполяционный многочлен Лагранжа:
(7.3)
Нетрудно заметить, что старшая степень аргумента х в многочлене Лагранжа равна n. Кроме этого, несложно показать, что в узловых точках значение интерполяционного многочлена Лагранжа соответствует заданным значениям f(xi).
- Ю. Я. Кацман прикладная математика Численные методы
- Оглавление
- 4.1. Постановка задачи 33
- 1. Элементы теории погрешностей
- Вопросы для самопроверки
- 2. Численное интегрирование
- 2.1. Постановка задачи
- 2.2. Формула прямоугольников
- 2.3. Формула трапеций
- 2.4. Формула Симпсона
- 2.5. Вычисление определенных интегралов методами Монте–Карло
- Вопросы для самопроверки
- Численное решение систем линейных алгебраических уравнений (слау)
- 3.1. Решение задач линейной алгебры
- 3.2. Метод Гаусса
- 3.3. Схема Гаусса с выбором главного элемента
- 3.4. Вычисление обратной матрицы методом Гаусса
- 3.5. Вычисление определителей методом Гаусса
- 3.6. Метод простой итерации (метод Якоби)
- 3.7. Метод Зейделя
- 3.8. Метод скорейшего спуска (градиента) для случая системы линейных алгебраических уравнений
- Вопросы для самопроверки
- 4. Приближенное решение нелинейных и трансцендентных уравнений
- 4.1. Постановка задачи
- 4.2. Графическое решение уравнений
- 4.3. Метод половинного деления (дихотомии)
- 4.4. Метод хорд
- 4.5. Метод Ньютона (метод касательных)
- 4.6. Комбинированный метод
- Вопросы для самопроверки
- 5. Приближенное решение систем нелинейных уравнений
- 5.1. Метод Ньютона
- 5.2. Метод градиента (метод скорейшего спуска)
- Вопросы для самопроверки
- 6. Решение обыкновенных дифференциальных уравнений
- 6.1. Методы решения задачи Коши
- 6.2. Метод рядов, не требующий вычисления производных правой части уравнения
- 6.3. Метод Рунге-Кутта
- 6.4. Многошаговые методы
- 6.5. Экстраполяционные методы Адамса
- 6.6. Интерполяционные методы Адамса
- Вопросы для самопроверки
- 7. Интерполирование и приближение функций
- 7.1. Задача интерполирования и аппроксимации функций
- 7.2. Интерполирование алгебраическими многочленами
- 7.3. Интерполяционная формула Ньютона
- 7.4. Сходимость интерполяционного процесса
- 7.5. Задача обратного интерполирования
- 7.6. Отыскание параметров эмпирических формул методом наименьших квадратов
- 7.7. Суть метода наименьших квадратов
- Основные свойства матрицы Грама
- Вопросы для самопроверки
- Литература
- Прикладная математика Численные методы