7.6. Отыскание параметров эмпирических формул методом наименьших квадратов
При эмпирическом (экспериментальном) изучении функциональной зависимости одной величины у от другой х производят ряд измерений величины у при различных значениях величины х. Полученные результаты можно представить в виде таблицы, графика:
X | x1 | x2 | … | xn |
Y | y1 | y2 | … | yn |
Задача заключается в аналитическом представлении искомой функциональной зависимости, то есть в подборе функции, описывающей результаты эксперимента.
Особенность задачи состоит в том, что наличие случайных ошибок измерений делает неразумным подбор такой формулы, которая точно описывала бы все опытные значения, то есть график искомой функции не должен проходить через все экспериментальные точки. Эмпирическую формулу обычно выбирают из формул определенного типа:
(7.12)
Таким образом, задача сводится к определению параметров a, b, c,… формулы, в то время как вид формулы известен заранее из каких-либо теоретических соображений или из соображения простоты аналитического представления эмпирического материала. Пусть выбранная эмпирическая зависимость имеет вид
(7.13)
с явным указанием всех параметров, подлежащих определению. Эти параметры а0, а1, а2,…, аn нельзя определить точно по эмпирическим значениям функции y0, y1, y2,…, yk, так как последние содержат случайные ошибки.
Таким образом, речь может идти только о получении достаточно хороших оценок искомых параметров. Метод наименьших квадратов (МНК) позволяет получить несмещенные и состоятельные оценки всех параметров а0, а1, а2,…, аn.
- Ю. Я. Кацман прикладная математика Численные методы
- Оглавление
- 4.1. Постановка задачи 33
- 1. Элементы теории погрешностей
- Вопросы для самопроверки
- 2. Численное интегрирование
- 2.1. Постановка задачи
- 2.2. Формула прямоугольников
- 2.3. Формула трапеций
- 2.4. Формула Симпсона
- 2.5. Вычисление определенных интегралов методами Монте–Карло
- Вопросы для самопроверки
- Численное решение систем линейных алгебраических уравнений (слау)
- 3.1. Решение задач линейной алгебры
- 3.2. Метод Гаусса
- 3.3. Схема Гаусса с выбором главного элемента
- 3.4. Вычисление обратной матрицы методом Гаусса
- 3.5. Вычисление определителей методом Гаусса
- 3.6. Метод простой итерации (метод Якоби)
- 3.7. Метод Зейделя
- 3.8. Метод скорейшего спуска (градиента) для случая системы линейных алгебраических уравнений
- Вопросы для самопроверки
- 4. Приближенное решение нелинейных и трансцендентных уравнений
- 4.1. Постановка задачи
- 4.2. Графическое решение уравнений
- 4.3. Метод половинного деления (дихотомии)
- 4.4. Метод хорд
- 4.5. Метод Ньютона (метод касательных)
- 4.6. Комбинированный метод
- Вопросы для самопроверки
- 5. Приближенное решение систем нелинейных уравнений
- 5.1. Метод Ньютона
- 5.2. Метод градиента (метод скорейшего спуска)
- Вопросы для самопроверки
- 6. Решение обыкновенных дифференциальных уравнений
- 6.1. Методы решения задачи Коши
- 6.2. Метод рядов, не требующий вычисления производных правой части уравнения
- 6.3. Метод Рунге-Кутта
- 6.4. Многошаговые методы
- 6.5. Экстраполяционные методы Адамса
- 6.6. Интерполяционные методы Адамса
- Вопросы для самопроверки
- 7. Интерполирование и приближение функций
- 7.1. Задача интерполирования и аппроксимации функций
- 7.2. Интерполирование алгебраическими многочленами
- 7.3. Интерполяционная формула Ньютона
- 7.4. Сходимость интерполяционного процесса
- 7.5. Задача обратного интерполирования
- 7.6. Отыскание параметров эмпирических формул методом наименьших квадратов
- 7.7. Суть метода наименьших квадратов
- Основные свойства матрицы Грама
- Вопросы для самопроверки
- Литература
- Прикладная математика Численные методы