7.3. Интерполяционная формула Ньютона
Интерполяционная формула Ньютона позволяет выразить интерполяционный многочлен Pn(x) через значение f(x) в одном из узлов и через разделенные разности функции f(x), построенные по узлам x0, x1,…, xn. Эта формула является разностным аналогом формулы Тейлора:
(7.4)
Прежде чем приводить формулу Ньютона, рассмотрим сведения о разделенных разностях. Пусть в узлах известны значения функции f(x). Предполагаем, что среди точек xk, k = 0, 1,…, n нет совпадающих. Тогда разделенными разностями первого порядка называются отношения
(7.5)
Будем рассматривать разделенные разности, составленные по соседним узлам, то есть выражения . По этим разделенным разностям первого порядка можно построить разделенные разности второго порядка:
(7.6)
Аналогично определяются разности более высокого порядка. То есть пусть известны разделенные разности k-го порядка тогда разделенная разность k+1-го порядка определяется как
(7.7)
Интерполяционным многочленом Ньютона называется многочлен
(7.8)
Показано, что интерполяционный многочлен Лагранжа (7.3) совпадает с интерполяционным многочленом Ньютона (7.8).
Замечания
В формуле (7.8) не предполагалось, что узлы x0, x1,…, xn расположены в каком-то определенном порядке. Поэтому роль точки x0 в формуле (7.8) может играть любая из точек x0, x1,…, xn. Соответствующее множество интерполяционных формул можно получить из (7.8), перенумеровав узлы. Например, тот же самый многочлен Pn(x) можно представить в виде
(7.9)
Если то (7.8) называется формулой интерполирования вперед, а (7.9) - формулой интерполирования назад.
Интерполяционную формулу Ньютона удобнее применять в том случае, когда интерполируется одна и та же функция f(x), но число узлов интерполяции постепенно увеличивается. Если узлы интерполяции фиксированы и интерполируется не одна, а несколько функций, то удобнее пользоваться формулой Лагранжа.
- Ю. Я. Кацман прикладная математика Численные методы
- Оглавление
- 4.1. Постановка задачи 33
- 1. Элементы теории погрешностей
- Вопросы для самопроверки
- 2. Численное интегрирование
- 2.1. Постановка задачи
- 2.2. Формула прямоугольников
- 2.3. Формула трапеций
- 2.4. Формула Симпсона
- 2.5. Вычисление определенных интегралов методами Монте–Карло
- Вопросы для самопроверки
- Численное решение систем линейных алгебраических уравнений (слау)
- 3.1. Решение задач линейной алгебры
- 3.2. Метод Гаусса
- 3.3. Схема Гаусса с выбором главного элемента
- 3.4. Вычисление обратной матрицы методом Гаусса
- 3.5. Вычисление определителей методом Гаусса
- 3.6. Метод простой итерации (метод Якоби)
- 3.7. Метод Зейделя
- 3.8. Метод скорейшего спуска (градиента) для случая системы линейных алгебраических уравнений
- Вопросы для самопроверки
- 4. Приближенное решение нелинейных и трансцендентных уравнений
- 4.1. Постановка задачи
- 4.2. Графическое решение уравнений
- 4.3. Метод половинного деления (дихотомии)
- 4.4. Метод хорд
- 4.5. Метод Ньютона (метод касательных)
- 4.6. Комбинированный метод
- Вопросы для самопроверки
- 5. Приближенное решение систем нелинейных уравнений
- 5.1. Метод Ньютона
- 5.2. Метод градиента (метод скорейшего спуска)
- Вопросы для самопроверки
- 6. Решение обыкновенных дифференциальных уравнений
- 6.1. Методы решения задачи Коши
- 6.2. Метод рядов, не требующий вычисления производных правой части уравнения
- 6.3. Метод Рунге-Кутта
- 6.4. Многошаговые методы
- 6.5. Экстраполяционные методы Адамса
- 6.6. Интерполяционные методы Адамса
- Вопросы для самопроверки
- 7. Интерполирование и приближение функций
- 7.1. Задача интерполирования и аппроксимации функций
- 7.2. Интерполирование алгебраическими многочленами
- 7.3. Интерполяционная формула Ньютона
- 7.4. Сходимость интерполяционного процесса
- 7.5. Задача обратного интерполирования
- 7.6. Отыскание параметров эмпирических формул методом наименьших квадратов
- 7.7. Суть метода наименьших квадратов
- Основные свойства матрицы Грама
- Вопросы для самопроверки
- Литература
- Прикладная математика Численные методы