logo search
Textbook

7.3. Интерполяционная формула Ньютона

Интерполяционная формула Ньютона позволяет выразить интерполяционный многочлен Pn(x) через значение f(x) в одном из узлов и через разделенные разности функции f(x), построенные по узлам x0, x1,…, xn. Эта формула является разностным аналогом формулы Тейлора:

(7.4)

Прежде чем приводить формулу Ньютона, рассмотрим сведения о разделенных разностях. Пусть в узлах известны значения функции f(x). Предполагаем, что среди точек xk, k = 0, 1,…, n нет совпадающих. Тогда разделенными разностями первого порядка называются отношения

(7.5)

Будем рассматривать разделенные разности, составленные по соседним узлам, то есть выражения . По этим разделенным разностям первого порядка можно построить разделенные разности второго порядка:

(7.6)

Аналогично определяются разности более высокого порядка. То есть пусть известны разделенные разности k-го порядка тогда разделенная разность k+1-го порядка определяется как

(7.7)

Интерполяционным многочленом Ньютона называется многочлен

(7.8)

Показано, что интерполяционный многочлен Лагранжа (7.3) совпадает с интерполяционным многочленом Ньютона (7.8).

Замечания

(7.9)