Гамильтоновы циклы и цепи.
Пусть G— псевдограф. Цепь (цикл) в G называется гамильтоновой (гамильтоновым), если она (он) проходит через каждую вершину псевдографа G ровно один раз.
С понятием гамильтоновых циклов тесно связана так называемая задача коммивояжера: в нагруженом графе G определить гамильтонов цикл минимальной длины (иными словами, коммерсант должен совершить поездку по городам и вернуться обратно, побывав в каждом городе ровно один paз, и при этом стоимость такой поездки должна быть минимальной.
На первый взгляд, понятие гамильтонова цикла сходно c понятием эйлерова цикла. Приведенные в таблице графы, где первый столбец соответствует случаям существования, второй столбец – не существования гамильтоновых циклов, а строки – случаям существования (первая строка и не существования (вторая строка) эйлеровых циклов, показывают независимость этих понятий.
1 2
1
2
Приведем необходимые и достаточные условия существования гамильтоновых циклов и цепей.
Рассмотрим класс графов, в которых заведомо существуют гамильтоновы цепи и циклы – это полные графы. Очевидно, что в полном графе всегда существуют гамильтонов цикл, а также гамильтоновы цепи, соединяющие две произвольные вершины этого графа, т.к. любая вершин полного графа смежна со всеми остальными вершинами Таким образом, простейшим достаточным условием существования гамильтоновых цепей и циклов в графе является его полнота. Приведем также простейшие необходимые условия. Очевидным необходимым условием существования гамильтоновых цепей и циклов в графе G является связность G. Более тонким необходимым условием существования гамильтонова цикла в графе G является следующее утверждение (примем его без доказательства):
Если граф G обладает гамильтоновым циклом, то в нем отсутствуют точки сочленения.
Приведем наиболее простые методы выделения в графе G(V,X), где V = {v1, …, vn}, гамильтоновых циклов и цепей. Наиболее простым из них является метод перебора всевозможных перестановок vi1, …, vin множества V. Если перестановка является маршрутом в G, то эта перестановка – гамильтонова цепь. По окончании перебора всех возможных перестановок будут выделены все гамильтоновы цепи.
Для выделения гамильтоновых циклов перебираем всевозможные перестановки v1, vi1, …, vin-1 . Если v1, vi1, …, vin-1, v1 – маршрут в графе G, то это гамильтонов цикл.
При выделении всех гамильтоновых цепей необходимо перебрать n! Перестановок, при выделении гамильтоновых циклов – (n – 1)! перестановок.
Описанный метод не учитывает информацию о графе. Рассмотрим метод, аналогичный предыдущему, но учитывающий информацию о графе. Составим всевозможные последовательности вершин vi1, …, vir , где vi1 V, vi2 G(vi1)\{vi1}, …, vir G(vir-1)\{vi1, …, vir-1}, G(vir) \{vi1, …, vir}= , где G(vir) – множество образов вершины vir. Тогда в каждом случае, когда r = n, последовательность vi1, …, vir – гамильтонова цепь. Соответственно, когда r = n, vi1 G(vin), последовательность vi1, …, vir, vi1 – гамильтонов цикл.
При этом выделяются все гамильтоновы циклы и цепи.
- Лекция 2
- Лекция 3
- Лекция 4
- Лекция 5
- Лекция 13
- Лекция 14
- Лекция 16
- Основные понятия
- Понятие множества. Способы задания множеств.
- Понятие множества. Способы задания множеств.
- Отношения между множествами.
- 3, Операции над множествами.
- Алгебра множеств.
- Теорема о количестве подмножеств конечного множества.
- Формула включений и исключений.
- Лекция 2
- 1.Понятие вектора. Прямое произведение множеств.
- 2.Теорема о количестве элементов прямого произведения.
- Понятие вектора. Прямое произведение множеств.
- Теорема о количестве элементов прямого произведения.
- Лекция 3
- 2. Понятие высказывания.
- 3. Логические операции над высказываниями
- 4.Формулы алгебры логики.
- Лекция 4
- 2. Важнейшие равносильности алгебры логики.
- 3.Равносильные преобразования формул.
- Задачи для самостоятельного решения
- Лекция 5
- Дизъюнктивная нормальная форма.
- Конъюнктивная нормальная форма.
- Проблема разрешимости.
- Лекция 6
- Функции алгебры логики.
- 3. Представление произвольной функции алгебры логики в виде формулы алгебры логики.
- 4.Приложения алгебры логики в технике (релейно-контактные схемы).
- Контрольные вопросы
- Лекция 7
- Совершенная дизъюнктивная нормальная форма.
- Совершенная конъюнктивная нормальная форма.
- Совершенная дизъюнктивная нормальная форма.
- 2.Совершенная конъюнктивная нормальная форма.
- Лекция 8
- 2.Понятие минимальной днф. Метод минимизирующих карт.
- 3.Метод Квайна.
- 4.Метод Карно.
- 5.Постановка задачи минимизации в геометрической форме.
- 6.Сокращенная днф.
- 7.Тупиковая днф. Днф Квайна.
- Лекция 9
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Лекция 10
- Полная система . Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- Независимые системы. Базис замкнутого класса.
- Полная система. Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- 3. Независимые системы. Базис замкнутого класса.
- Лекция 11
- Понятие предиката.
- Логические операции над предикатами.
- 1. Понятие предиката
- 2. Логические операции над предикатами
- Лекция 12
- 2. Формулы логики предикатов.
- Значение формулы логики предикатов.
- 4. Равносильные формулы логики предикатов.
- Лекция 13
- Построение противоположных утверждений.
- 3. Прямая, обратная и противоположная теоремы.
- 4. Необходимые и достаточные условия.
- 5. Доказательство методом от противного.
- Задачи для самостоятельного решения
- Лекция 14
- 2. Использование метода математической индукции для нахождения сумм конечного числа слагаемых
- 3. Использование метода математической индукции для доказательства неравенств и делимости выражений, зависящих от n на некоторое число
- 4. Обобщение метода математической индукции
- Контрольные вопросы
- Лекция 15
- Операции над бинарными отношениями.
- 3. Свойства бинарных отношений.
- 4. Специальные бинарные отношения.
- Контрольные вопросы
- Лекция 16
- Функция
- 1. 4. Отображение
- Обратная функция
- 2. Свойства отображений и функций
- 3.Операции над функциями. Свойства операций
- Контрольные вопросы
- Лекция 17
- Основные понятия .
- 2. Смежность, инцидентность, степени вершин.
- 3. Способы задания графов
- Маршруты в неориентированном графе
- Операции над графами.
- Связность. Компоненты связности
- Контрольные вопросы
- Лекция 18
- 2. Метрические характеристики неориентированного графа
- Минимальные маршруты в нагруженных графах
- Задачи на деревьях
- Цикловой ранг графа. Цикломатическое число
- Контрольные вопросы
- Лекция 19
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи.
- Контрольные вопросы
- Лекция 20
- Двудольный граф. Условие существования двудольного графа
- Паросочетания . Реберные покрытия
- Двудольный граф. Условие существования двудольного графа
- Паросочетания. Реберные покрытия
- Контрольные вопросы
- Лекция 21
- Основные определения
- Алгоритм плоской укладки графа
- Контрольные вопросы
- Лекция 22
- Способы задания ориентированного графа
- Путь в ориентированном графе
- 4. Связность. Компоненты связности в орграфе
- Контрольные вопросы
- Лекция 23
- 2. Минимальные пути в нагруженных орграфах
- 3. Порядковая функция орграфа без контуров
- Контрольные вопросы