4. Связность. Компоненты связности в орграфе
Вершина w орграфа D достижима из вершины v, если:
а) v = w ;
б) существует путь из v в w.
Орграф называется сильно связным, если для любых его вершин v, w существует путь из v в w, и из w в v.
Орграф называется односторонне связным, если для любых двух вершин хотя бы одна достижима из другой.
Пример:
u2
u1 сильно связный граф
u3
u2
u1 односторонне связный граф
u3
Псевдографом, ассоциированным с ориентированным псевдографом D(V, X), называется псевдограф G(V, X0), в котором Х0 получается заменой всех упорядоченных пар (v, w) на неупорядоченные {v, w}.
Пример: Дан орграф D(V, X):
Для него G (V, X0):
Орграф называется слабо связным, если связным является ассоциированный с ним псевдограф.
В рассмотренном выше примере граф G (V, X0) связный, значит орграф D(V, X) – слабо связный.
Если орграф не является слабо связным, то он называется несвязым.
Пример:
Представленный на этом рисунке граф D(V , X) – несвязный, т.к. ассоциированный ему граф G(V, X0) – несвязный, т.к. р(G) = 2.
Компонентой сильной связности графа D называется его сильно связный подграф, не являющийся собственным подграфом никакого другого сильно связного подграфа орграфа D.
Пример:
Этот орграф имеет две компоненты сильной связности:
D1 D2
Значит Р (D) = 2.
Замечание: Вершина достижима сама для себя, поэтому является сильно связным подграфом.
Орграф D(V , X) Компоненты сильной связности орграфа D(V , X)
Этот граф имеет три компоненты сильной связности.
Из определения компоненты сильной связности следует справедливость утверждений:
Пусть D1(V1, X1) – компонента сильной связности орграфа D(V, X), тогда D1 – подграф орграфа D(V, X) , порожденный множеством V1.
Пусть D(V, X) – орграф с р компонентами сильной связности: D1(V1, X1) ,…, Dр(Vр, Xр) . Тогда:
V = V1 …Vp , X X1 … Xp ;
Vi Vj = , Xi Xj = , если i j ;
n(D1) +…+ n(Dp) = n(D), m(D1) +…+ m(Dp) m(D).
- Лекция 2
- Лекция 3
- Лекция 4
- Лекция 5
- Лекция 13
- Лекция 14
- Лекция 16
- Основные понятия
- Понятие множества. Способы задания множеств.
- Понятие множества. Способы задания множеств.
- Отношения между множествами.
- 3, Операции над множествами.
- Алгебра множеств.
- Теорема о количестве подмножеств конечного множества.
- Формула включений и исключений.
- Лекция 2
- 1.Понятие вектора. Прямое произведение множеств.
- 2.Теорема о количестве элементов прямого произведения.
- Понятие вектора. Прямое произведение множеств.
- Теорема о количестве элементов прямого произведения.
- Лекция 3
- 2. Понятие высказывания.
- 3. Логические операции над высказываниями
- 4.Формулы алгебры логики.
- Лекция 4
- 2. Важнейшие равносильности алгебры логики.
- 3.Равносильные преобразования формул.
- Задачи для самостоятельного решения
- Лекция 5
- Дизъюнктивная нормальная форма.
- Конъюнктивная нормальная форма.
- Проблема разрешимости.
- Лекция 6
- Функции алгебры логики.
- 3. Представление произвольной функции алгебры логики в виде формулы алгебры логики.
- 4.Приложения алгебры логики в технике (релейно-контактные схемы).
- Контрольные вопросы
- Лекция 7
- Совершенная дизъюнктивная нормальная форма.
- Совершенная конъюнктивная нормальная форма.
- Совершенная дизъюнктивная нормальная форма.
- 2.Совершенная конъюнктивная нормальная форма.
- Лекция 8
- 2.Понятие минимальной днф. Метод минимизирующих карт.
- 3.Метод Квайна.
- 4.Метод Карно.
- 5.Постановка задачи минимизации в геометрической форме.
- 6.Сокращенная днф.
- 7.Тупиковая днф. Днф Квайна.
- Лекция 9
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Лекция 10
- Полная система . Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- Независимые системы. Базис замкнутого класса.
- Полная система. Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- 3. Независимые системы. Базис замкнутого класса.
- Лекция 11
- Понятие предиката.
- Логические операции над предикатами.
- 1. Понятие предиката
- 2. Логические операции над предикатами
- Лекция 12
- 2. Формулы логики предикатов.
- Значение формулы логики предикатов.
- 4. Равносильные формулы логики предикатов.
- Лекция 13
- Построение противоположных утверждений.
- 3. Прямая, обратная и противоположная теоремы.
- 4. Необходимые и достаточные условия.
- 5. Доказательство методом от противного.
- Задачи для самостоятельного решения
- Лекция 14
- 2. Использование метода математической индукции для нахождения сумм конечного числа слагаемых
- 3. Использование метода математической индукции для доказательства неравенств и делимости выражений, зависящих от n на некоторое число
- 4. Обобщение метода математической индукции
- Контрольные вопросы
- Лекция 15
- Операции над бинарными отношениями.
- 3. Свойства бинарных отношений.
- 4. Специальные бинарные отношения.
- Контрольные вопросы
- Лекция 16
- Функция
- 1. 4. Отображение
- Обратная функция
- 2. Свойства отображений и функций
- 3.Операции над функциями. Свойства операций
- Контрольные вопросы
- Лекция 17
- Основные понятия .
- 2. Смежность, инцидентность, степени вершин.
- 3. Способы задания графов
- Маршруты в неориентированном графе
- Операции над графами.
- Связность. Компоненты связности
- Контрольные вопросы
- Лекция 18
- 2. Метрические характеристики неориентированного графа
- Минимальные маршруты в нагруженных графах
- Задачи на деревьях
- Цикловой ранг графа. Цикломатическое число
- Контрольные вопросы
- Лекция 19
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи.
- Контрольные вопросы
- Лекция 20
- Двудольный граф. Условие существования двудольного графа
- Паросочетания . Реберные покрытия
- Двудольный граф. Условие существования двудольного графа
- Паросочетания. Реберные покрытия
- Контрольные вопросы
- Лекция 21
- Основные определения
- Алгоритм плоской укладки графа
- Контрольные вопросы
- Лекция 22
- Способы задания ориентированного графа
- Путь в ориентированном графе
- 4. Связность. Компоненты связности в орграфе
- Контрольные вопросы
- Лекция 23
- 2. Минимальные пути в нагруженных орграфах
- 3. Порядковая функция орграфа без контуров
- Контрольные вопросы