Понятие вектора. Прямое произведение множеств.
1.1. Понятие вектора.
Вектор- это упорядоченный набор элементов или упорядоченное множество.
Элементы – это координаты или компоненты вектора.
Нумерация элементов производится слева направо.
Векторы (а1 , а2), (а1 , а2 , а3), (а1 , а2 , а3 ,…) называют соответственно двойка, тройка, энка.
Количество элементов в векторе называется длиной вектора.
Равные векторы: два вектора (а1 , а2 , а3 ,…, аn) и (b1 , b2 ,…, bm) равны тогда и только тогда, когда n = m и а1 = b1 , а2 = b2 , …, аn = bm .
Пример: {1, 2} = {2, 1, 1} = {2, 1}, но (1, 2) (2, 1, 1) (2, 1). Только (1, 2) = (1, 2).
Прямое произведение множеств.
Прямым (декартовым) произведением множеств А и В называется множество всех пар (а, в) таких, что а А и в В.
Обозначение: А В.
Если А = В, то А В =А2 и называется декартовым квадратом.
Приведем формулировку определения прямого произведения n множеств:
Прямое произведение множеств А1 , А2 , …, Аn есть множество всех векторов (а1 , а2 , а3 ,…, аn) длины n таких , что а1 А1 , а2 А2 , …, ап Ап .
Если А1 = А2 = … = Аn , то А1 А2 … Аn = Аn и называется декартовой степенью.
Примеры:
R – множество действительных чисел, тогда RR = R2 – векторы (а, в), где аR и вR, есть координаты точек плоскости.
Такое координатное представление точек плоскости было предложено Декартом и являлось первым в истории примером прямого произведения множеств.
Прямое произведение {1, 2, 3, …, 8} {a, b, c, d, …, h}- есть множество клеток шахматной доски.
Рассмотрим множество А, элементы которого символы (буквы, цифры, знаки препинания, знаки операций…), тогда Аn – это слова длиной n (под словом можно понимать текст).
Составим прямое произведение множеств Х = {1,2,3}и У= {0,1}: ХУ и УХ. ХУ={(1,0), (1,1), (2,0), (2,1), (3,0), (3,1)}. УХ= {(0,1), (0,2), (0,3), (1,1), (1,2), (1,3)}. Геометрическая интерпретация произведения двух конечных множеств- точки плоскости . Как видно из построенных произведений прямое произведение множеств не обладает свойством коммутативности.
Построим прямое произведение двух несчетных множеств – числовых отрезков, например, [0,1][1,2]. Результатом данного произведения являются все точки квадрата с вершинами (0,1), (0,2), (1,1) и (1,):
Построим прямое произведение трех числовых отрезков, например: [0,1] [1,2] [1,2]. Произведением первых двух отрезков является квадрат с вершинами (0,1), (0,2), (1,1), (1,2). Произведением полученного множества точек квадрата на числовой отрезок [1,3] является множество точек прямоугольного параллелепипеда ( в данном случае куба), вершины которого точки: (0,1,1), (0,1,2), (0,2,1), (0,2,2), (1,1,1), (1,1,2), (1,2,1), (1,2,2).
Yandex.RTB R-A-252273-3
- Лекция 2
- Лекция 3
- Лекция 4
- Лекция 5
- Лекция 13
- Лекция 14
- Лекция 16
- Основные понятия
- Понятие множества. Способы задания множеств.
- Понятие множества. Способы задания множеств.
- Отношения между множествами.
- 3, Операции над множествами.
- Алгебра множеств.
- Теорема о количестве подмножеств конечного множества.
- Формула включений и исключений.
- Лекция 2
- 1.Понятие вектора. Прямое произведение множеств.
- 2.Теорема о количестве элементов прямого произведения.
- Понятие вектора. Прямое произведение множеств.
- Теорема о количестве элементов прямого произведения.
- Лекция 3
- 2. Понятие высказывания.
- 3. Логические операции над высказываниями
- 4.Формулы алгебры логики.
- Лекция 4
- 2. Важнейшие равносильности алгебры логики.
- 3.Равносильные преобразования формул.
- Задачи для самостоятельного решения
- Лекция 5
- Дизъюнктивная нормальная форма.
- Конъюнктивная нормальная форма.
- Проблема разрешимости.
- Лекция 6
- Функции алгебры логики.
- 3. Представление произвольной функции алгебры логики в виде формулы алгебры логики.
- 4.Приложения алгебры логики в технике (релейно-контактные схемы).
- Контрольные вопросы
- Лекция 7
- Совершенная дизъюнктивная нормальная форма.
- Совершенная конъюнктивная нормальная форма.
- Совершенная дизъюнктивная нормальная форма.
- 2.Совершенная конъюнктивная нормальная форма.
- Лекция 8
- 2.Понятие минимальной днф. Метод минимизирующих карт.
- 3.Метод Квайна.
- 4.Метод Карно.
- 5.Постановка задачи минимизации в геометрической форме.
- 6.Сокращенная днф.
- 7.Тупиковая днф. Днф Квайна.
- Лекция 9
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Лекция 10
- Полная система . Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- Независимые системы. Базис замкнутого класса.
- Полная система. Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- 3. Независимые системы. Базис замкнутого класса.
- Лекция 11
- Понятие предиката.
- Логические операции над предикатами.
- 1. Понятие предиката
- 2. Логические операции над предикатами
- Лекция 12
- 2. Формулы логики предикатов.
- Значение формулы логики предикатов.
- 4. Равносильные формулы логики предикатов.
- Лекция 13
- Построение противоположных утверждений.
- 3. Прямая, обратная и противоположная теоремы.
- 4. Необходимые и достаточные условия.
- 5. Доказательство методом от противного.
- Задачи для самостоятельного решения
- Лекция 14
- 2. Использование метода математической индукции для нахождения сумм конечного числа слагаемых
- 3. Использование метода математической индукции для доказательства неравенств и делимости выражений, зависящих от n на некоторое число
- 4. Обобщение метода математической индукции
- Контрольные вопросы
- Лекция 15
- Операции над бинарными отношениями.
- 3. Свойства бинарных отношений.
- 4. Специальные бинарные отношения.
- Контрольные вопросы
- Лекция 16
- Функция
- 1. 4. Отображение
- Обратная функция
- 2. Свойства отображений и функций
- 3.Операции над функциями. Свойства операций
- Контрольные вопросы
- Лекция 17
- Основные понятия .
- 2. Смежность, инцидентность, степени вершин.
- 3. Способы задания графов
- Маршруты в неориентированном графе
- Операции над графами.
- Связность. Компоненты связности
- Контрольные вопросы
- Лекция 18
- 2. Метрические характеристики неориентированного графа
- Минимальные маршруты в нагруженных графах
- Задачи на деревьях
- Цикловой ранг графа. Цикломатическое число
- Контрольные вопросы
- Лекция 19
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи.
- Контрольные вопросы
- Лекция 20
- Двудольный граф. Условие существования двудольного графа
- Паросочетания . Реберные покрытия
- Двудольный граф. Условие существования двудольного графа
- Паросочетания. Реберные покрытия
- Контрольные вопросы
- Лекция 21
- Основные определения
- Алгоритм плоской укладки графа
- Контрольные вопросы
- Лекция 22
- Способы задания ориентированного графа
- Путь в ориентированном графе
- 4. Связность. Компоненты связности в орграфе
- Контрольные вопросы
- Лекция 23
- 2. Минимальные пути в нагруженных орграфах
- 3. Порядковая функция орграфа без контуров
- Контрольные вопросы