3. Логические операции над высказываниями
3.1.Отрицание.
Отрицанием высказывания х называется новое высказывание, которое является истинным, если высказывание х ложно, и ложным, если высказывание х истинно.
Отрицание высказывания х обозначается и читается «не х» или «неверно, что х».
Логические значения высказывания можно описать с помощью таблицы.
х |
|
0 | 1 |
1 | 0 |
Таблицы такого вида принято называть таблицами истинности.
Пусть х высказывание. Так как также является высказыванием, то можно образовать
отрицание высказывания , то есть высказывание , которое называется двойным отрицанием высказывания х. Ясно, что логические значения высказываний совпадают.
Например, для высказывания «Река Волхов вытекает из озера Ильмень» отрицанием будет высказывание «Неверно, что река Волхов вытекает из озера Ильмень» или «Река Волхов не вытекает из озера Ильмень», а двойным отрицанием будет высказывание «Неверно, что река Волхов не вытекает из озера Ильмень».
3.2. Конъюнкция.
Конъюнкцией (логическим умножением) двух высказываний х и у называется новое высказывание, которое считается истинным, если оба высказывания х и у истинны, и ложным, если хотя бы одно из них ложно.
Конъюнкция высказываний х и у обозначается символом х&у (х у, ху ), читается «х и. у». Высказывания х и у называются членами конъюнкции.
Логические значения конъюнкции описываются следующей таблицей истинности:
х | у | ху |
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
Например, для высказываний «6 делится на 2», «6 делится на 3» их конъюнкцией будет высказывание «6 делится на 2 и 6 делится на 3», которое, очевидно, истинно.
Из определения операции конъюнкции видно, что союз «и» в алгебре логики употребляется в том же смысле, что и в повседневной речи. Но в обычной речи не принято соединять союзом «и» два высказывания далеких друг от друга по содержанию, а в алгебре логики рассматривается конъюнкция двух любых высказываний.
Из определения операции конъюнкции и отрицания ясно, что высказывание всегда ложно.
3.2. Дизъюнкция
Дизъюнкцией (логическим сложением) двух высказываний х и у называется новое высказывание, которое считается истинным, если хотя бы одно из высказываний х, у истинно, и ложным, если они оба ложны.
Дизъюнкция высказываний х, у обозначается символом «x v у», читается «х или у». Высказывания х, у называются членами дизъюнкции.
Логические значения дизъюнкции описываются следующей таблицей истинности:
х | у | хvу |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 1 |
Например, высказывание: «В треугольнике DFE угол D или угол Е острый» истинно, так как обязательно истинно хотя бы одно из высказываний: «В треугольнике DFE угол D острый», «В треугольнике DFE угол Е острый».
В повседневной речи союз «или» употребляется в различном смысле: исключающем и не исключающем. В алгебре логики союз «или» всегда употребляется в не исключающем смысле.
Из определения операции дизъюнкции и отрицания ясно, что высказывание всегда истинно.
3.3. Импликация.
Импликацией двух высказываний х и у называется новое высказывание, которое считается ложным, если х истинно, а у - ложно, и истинным во всех остальных случаях.
Импликация высказываний х, у обозначается символом х у , читается «если х, то у» или «из х следует у». Высказывание х называют условием или посылкой, высказывание у - следствием или заключением, высказывание х у следованием или импликацией.
Логические значения операции импликации описываются следующей таблицей истинности:
х | у | ху |
0 | 0 | 1 |
0 | 1 | 1 |
1 | 0 | 0 |
1 | 1 | 1 |
Например, высказывание «Если число 12 делится на 6, то оно делится на 3», очевидно, истинно, так как здесь истинна посылка: «Число 12 делится на 6» и истинно заключение «Число 12 делится на 3».
Употребление слов «если .... то ...» в алгебре логики отличается от употребления их в обыденной речи, где мы, как правило, считаем, что, если высказывание х ложно, то высказывание «Если х, то у» вообще не имеет смысла. Кроме того, строя предложение вида «если х, то у» в обыденной речи, мы всегда подразумеваем, что предложение у вытекает из предложения х. Употребление слов «если ..., то ...» в математической логике не требует этого, поскольку в ней смысл высказываний не рассматривается.
Импликация играет важную роль в математических доказательствах, так как многие теоремы формулируются в условной форме «Если х, то у». Если при этом известно, что х истинно и доказана истинность импликации х у, то мы вправе сделать вывод об истинности заключения у.
3.5. Эквиваленция.
Эквиваленцей (или эквивалентностью) двух высказываний х и у называется новое высказывание, которое считается истинным, когда оба высказывания х, у либо одновременно истинны, либо одновременно ложны, и ложным во всех остальных случаях.
Эквиваленция высказываний х, у обозначается символом х у , читается «для того, чтобы х, необходимо и достаточно, чтобы у» или «х тогда и только тогда, когда у». Высказывания х, у называются членами эквиваленции.
Логические значения операции эквиваленции описываются следующей таблицей истинности:
х | у | ху |
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
Например, эквиваленция: «Треугольник SPQ с вершиной S и основанием PQ равнобедренный тогда и только тогда, когда SP = SQ » является истинной, так как высказывания «Треугольник .SPQ с вершиной S и основанием PQ равнобедренный» и «В треугольнике SPQ с вершиной S и основанием PQ SP = SQ » либо одновременно истинны, либо одновременно ложны.
Эквивалентность играет важную роль в математических доказательствах. Известно, что значительное число теорем формулируется в форме необходимых и достаточных условий, то есть в форме эквивалентности. В этом случае, зная об истинности или ложности одного из двух членов эквивалентности и доказав истинность самой эквивалентности, мы заключаем об истинности или ложности второго члена эквивалентности.
Yandex.RTB R-A-252273-3- Лекция 2
- Лекция 3
- Лекция 4
- Лекция 5
- Лекция 13
- Лекция 14
- Лекция 16
- Основные понятия
- Понятие множества. Способы задания множеств.
- Понятие множества. Способы задания множеств.
- Отношения между множествами.
- 3, Операции над множествами.
- Алгебра множеств.
- Теорема о количестве подмножеств конечного множества.
- Формула включений и исключений.
- Лекция 2
- 1.Понятие вектора. Прямое произведение множеств.
- 2.Теорема о количестве элементов прямого произведения.
- Понятие вектора. Прямое произведение множеств.
- Теорема о количестве элементов прямого произведения.
- Лекция 3
- 2. Понятие высказывания.
- 3. Логические операции над высказываниями
- 4.Формулы алгебры логики.
- Лекция 4
- 2. Важнейшие равносильности алгебры логики.
- 3.Равносильные преобразования формул.
- Задачи для самостоятельного решения
- Лекция 5
- Дизъюнктивная нормальная форма.
- Конъюнктивная нормальная форма.
- Проблема разрешимости.
- Лекция 6
- Функции алгебры логики.
- 3. Представление произвольной функции алгебры логики в виде формулы алгебры логики.
- 4.Приложения алгебры логики в технике (релейно-контактные схемы).
- Контрольные вопросы
- Лекция 7
- Совершенная дизъюнктивная нормальная форма.
- Совершенная конъюнктивная нормальная форма.
- Совершенная дизъюнктивная нормальная форма.
- 2.Совершенная конъюнктивная нормальная форма.
- Лекция 8
- 2.Понятие минимальной днф. Метод минимизирующих карт.
- 3.Метод Квайна.
- 4.Метод Карно.
- 5.Постановка задачи минимизации в геометрической форме.
- 6.Сокращенная днф.
- 7.Тупиковая днф. Днф Квайна.
- Лекция 9
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Лекция 10
- Полная система . Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- Независимые системы. Базис замкнутого класса.
- Полная система. Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- 3. Независимые системы. Базис замкнутого класса.
- Лекция 11
- Понятие предиката.
- Логические операции над предикатами.
- 1. Понятие предиката
- 2. Логические операции над предикатами
- Лекция 12
- 2. Формулы логики предикатов.
- Значение формулы логики предикатов.
- 4. Равносильные формулы логики предикатов.
- Лекция 13
- Построение противоположных утверждений.
- 3. Прямая, обратная и противоположная теоремы.
- 4. Необходимые и достаточные условия.
- 5. Доказательство методом от противного.
- Задачи для самостоятельного решения
- Лекция 14
- 2. Использование метода математической индукции для нахождения сумм конечного числа слагаемых
- 3. Использование метода математической индукции для доказательства неравенств и делимости выражений, зависящих от n на некоторое число
- 4. Обобщение метода математической индукции
- Контрольные вопросы
- Лекция 15
- Операции над бинарными отношениями.
- 3. Свойства бинарных отношений.
- 4. Специальные бинарные отношения.
- Контрольные вопросы
- Лекция 16
- Функция
- 1. 4. Отображение
- Обратная функция
- 2. Свойства отображений и функций
- 3.Операции над функциями. Свойства операций
- Контрольные вопросы
- Лекция 17
- Основные понятия .
- 2. Смежность, инцидентность, степени вершин.
- 3. Способы задания графов
- Маршруты в неориентированном графе
- Операции над графами.
- Связность. Компоненты связности
- Контрольные вопросы
- Лекция 18
- 2. Метрические характеристики неориентированного графа
- Минимальные маршруты в нагруженных графах
- Задачи на деревьях
- Цикловой ранг графа. Цикломатическое число
- Контрольные вопросы
- Лекция 19
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи.
- Контрольные вопросы
- Лекция 20
- Двудольный граф. Условие существования двудольного графа
- Паросочетания . Реберные покрытия
- Двудольный граф. Условие существования двудольного графа
- Паросочетания. Реберные покрытия
- Контрольные вопросы
- Лекция 21
- Основные определения
- Алгоритм плоской укладки графа
- Контрольные вопросы
- Лекция 22
- Способы задания ориентированного графа
- Путь в ориентированном графе
- 4. Связность. Компоненты связности в орграфе
- Контрольные вопросы
- Лекция 23
- 2. Минимальные пути в нагруженных орграфах
- 3. Порядковая функция орграфа без контуров
- Контрольные вопросы