4. Обобщение метода математической индукции
Бывают случаи, когда утверждение, неверное для n =1, 2, ... , р - 1, справедливо для n = р. Если затем из предположения о его истинности для n = k>p можно доказать, что оно истинно и для n = k +1, то получаем, что данное выражение истинно для всех n р.
Пример 6. Докажем, что выражение (кратно 19) для всех натуральных чисел n 3.
Решение. При n = 3 получаем
73 + 823-3 = 343 + 512 = 855 = 45 19
т. е. при n = 3 утверждение верно.
Предположим, что 7k +82k-3 кратно 19 при k >3, и докажем, что 7k+1 + 82(k+1)-3 кратно 19.
По предположению 7k +82k-3 = 19m , где mN , значит,
82k-3 = 19m – 7k.
Отсюда имеем:
7k+1 + 82(k+1)-3 = 7k+1 + 82k-3+2 = 7k+1 + 6482k-3 = 7k+1 + 64(19m – 7k) = 7k(7 – 64) + 64 19m = 64 19m – 57 7k = 19(64m - 37k),
т. е. выражение кратно 19.
Итак, мы доказали, что утверждение верно для n = 3, и из предположения, что оно верно для n = k>3, доказали его справедливость для n = k + 1. Тогда на основании сказанного выше заключаем, что выражение для всех n 3.
Пример 7. Доказать, что 2n 5n – 3 при n 5.
При n = 5: 25 = 32, 55 – 3 = 22 и 32 > 22.
Пусть неравенство верно при n = k, k > 5, т.е. 2k 5k – 3.
Докажем справедливость неравенства при n = k +1, т.е. справедливость неравенства 2k+1 5(k+1) – 3 или 2k+1 5k +2.
Умножим обе части неравенства на 2: 2k+1 2(5k – 3).
Преобразуем правую часть неравенства: 2(5k – 3) = 10k – 6 = 5k + 2 + 5k – 8. Заметим, что 5k – 8 0 при k > 5, тогда 5k + 2 + 5k – 8 > 5k + 2 и, тогда 2k+1 5k +2.
Yandex.RTB R-A-252273-3- Лекция 2
- Лекция 3
- Лекция 4
- Лекция 5
- Лекция 13
- Лекция 14
- Лекция 16
- Основные понятия
- Понятие множества. Способы задания множеств.
- Понятие множества. Способы задания множеств.
- Отношения между множествами.
- 3, Операции над множествами.
- Алгебра множеств.
- Теорема о количестве подмножеств конечного множества.
- Формула включений и исключений.
- Лекция 2
- 1.Понятие вектора. Прямое произведение множеств.
- 2.Теорема о количестве элементов прямого произведения.
- Понятие вектора. Прямое произведение множеств.
- Теорема о количестве элементов прямого произведения.
- Лекция 3
- 2. Понятие высказывания.
- 3. Логические операции над высказываниями
- 4.Формулы алгебры логики.
- Лекция 4
- 2. Важнейшие равносильности алгебры логики.
- 3.Равносильные преобразования формул.
- Задачи для самостоятельного решения
- Лекция 5
- Дизъюнктивная нормальная форма.
- Конъюнктивная нормальная форма.
- Проблема разрешимости.
- Лекция 6
- Функции алгебры логики.
- 3. Представление произвольной функции алгебры логики в виде формулы алгебры логики.
- 4.Приложения алгебры логики в технике (релейно-контактные схемы).
- Контрольные вопросы
- Лекция 7
- Совершенная дизъюнктивная нормальная форма.
- Совершенная конъюнктивная нормальная форма.
- Совершенная дизъюнктивная нормальная форма.
- 2.Совершенная конъюнктивная нормальная форма.
- Лекция 8
- 2.Понятие минимальной днф. Метод минимизирующих карт.
- 3.Метод Квайна.
- 4.Метод Карно.
- 5.Постановка задачи минимизации в геометрической форме.
- 6.Сокращенная днф.
- 7.Тупиковая днф. Днф Квайна.
- Лекция 9
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Лекция 10
- Полная система . Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- Независимые системы. Базис замкнутого класса.
- Полная система. Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- 3. Независимые системы. Базис замкнутого класса.
- Лекция 11
- Понятие предиката.
- Логические операции над предикатами.
- 1. Понятие предиката
- 2. Логические операции над предикатами
- Лекция 12
- 2. Формулы логики предикатов.
- Значение формулы логики предикатов.
- 4. Равносильные формулы логики предикатов.
- Лекция 13
- Построение противоположных утверждений.
- 3. Прямая, обратная и противоположная теоремы.
- 4. Необходимые и достаточные условия.
- 5. Доказательство методом от противного.
- Задачи для самостоятельного решения
- Лекция 14
- 2. Использование метода математической индукции для нахождения сумм конечного числа слагаемых
- 3. Использование метода математической индукции для доказательства неравенств и делимости выражений, зависящих от n на некоторое число
- 4. Обобщение метода математической индукции
- Контрольные вопросы
- Лекция 15
- Операции над бинарными отношениями.
- 3. Свойства бинарных отношений.
- 4. Специальные бинарные отношения.
- Контрольные вопросы
- Лекция 16
- Функция
- 1. 4. Отображение
- Обратная функция
- 2. Свойства отображений и функций
- 3.Операции над функциями. Свойства операций
- Контрольные вопросы
- Лекция 17
- Основные понятия .
- 2. Смежность, инцидентность, степени вершин.
- 3. Способы задания графов
- Маршруты в неориентированном графе
- Операции над графами.
- Связность. Компоненты связности
- Контрольные вопросы
- Лекция 18
- 2. Метрические характеристики неориентированного графа
- Минимальные маршруты в нагруженных графах
- Задачи на деревьях
- Цикловой ранг графа. Цикломатическое число
- Контрольные вопросы
- Лекция 19
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи.
- Контрольные вопросы
- Лекция 20
- Двудольный граф. Условие существования двудольного графа
- Паросочетания . Реберные покрытия
- Двудольный граф. Условие существования двудольного графа
- Паросочетания. Реберные покрытия
- Контрольные вопросы
- Лекция 21
- Основные определения
- Алгоритм плоской укладки графа
- Контрольные вопросы
- Лекция 22
- Способы задания ориентированного графа
- Путь в ориентированном графе
- 4. Связность. Компоненты связности в орграфе
- Контрольные вопросы
- Лекция 23
- 2. Минимальные пути в нагруженных орграфах
- 3. Порядковая функция орграфа без контуров
- Контрольные вопросы