4.Формулы алгебры логики.
С помощью логических операций над высказываниями из заданной совокупности высказываний можно строить различные сложные высказывания. При этом порядок выполнения операций указывается скобками. Например, из трех высказываний х, у, z можно построить высказывания:
Первое из них есть дизъюнкция конъюнкции х и у и отрицания выказывания z, а второе высказывание есть импликация, посылкой которой является высказывание х,
а заключением - отрицание дизъюнкции высказывания у и конъюнкции высказываний х, z.
Всякое сложное высказывание, которое может быть получено из элементарных высказываний посредством применения логических операций отрицания, конъюнкции, дизъюнкции, импликации и эквиваленции, называется формулой алгебры логики.
Формулы алгебры логики будем обозначать большими буквами латинского алфавита А, В, С, ...
Для упрощения записи формул принят ряд соглашений:
скобки можно опускать, придерживаясь следующего порядка действий:
- конъюнкция выполняется раньше, чем все остальные операции,
- дизъюнкция выполняется раньше, чем импликация и эквивалентность
- если над формулой стоит знак отрицания, то скобки тоже опускаются.
В связи с этим формулы:
могут быть записаны так:
Логическое значение формулы алгебры логики полностью определяется логическими значениями входящих в нее элементарных высказываний. Например, логическим значением формулы в случае, если х = 1, у = 1, z = 0 будет истина, то есть
Все возможные логические значения формулы, в зависимости от значений входящих в нее элементарных высказываний, могут быть описаны полностью с помощью таблицы истинности.
Например, для формулы (указан порядок действий) таблица истинности имеет вид:
х | у | 1 | 2 | 3 | 4 | 5 |
1 | 1 | 0 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 1 | 0 | 0 |
Первые два столбца- это всевозможные наборы значений входящих в формулу различных простых высказываний. Легко видеть, что формула принимает 2n значений, состоящих из нулей и единиц, значит, таблица истинности содержит столько же строк.
Рассмотрим еще один пример на составление таблицы истинности:
. Таблица содержит 23 = 8 строк:
x | y | z | 1 | 2 | 3 | 4 | 5 |
0 | 0 | 0 | 1 | 0 | 0 | 1 | 1 |
1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
0 | 1 | 0 | 1 | 1 | 1 | 0 | 0 |
0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 |
1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 |
0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
1 | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
Задачи для самостоятельного решения
1. Какие из следующих предложений являются высказываниями:
а)Москва - столица России;
б)
в) студент физико-математического факультета;
г) 5+3 – 6;
д) Луна есть спутник Марса;
е) а>0.
2. Приведите примеры предложений, а) являющихся высказываниями; б) не являющихся высказываниями.
3. Установите, истинно или ложно высказывание:
а )
б )
4. Среди следующих высказываний указать элементарные (простые) и составные (сложные). В составных высказываниях выделить грамматические связки:
1) число 27 не делится на 3;
2) число 15 делится на 5 и на 3;
3) если число 126 делится на 9, то оно делится на 3;
4) число 7 является делителем числа 42;
5) число 1269 делится на 9 тогда и только тг когда 18 делится на 9.
5. Обозначьте элементарные высказывания буквами и запишите следующие высказывания с помощью символов алгебры логики:
1) 45 кратно 3 и 42 кратно 3;
2) 45 кратно 3 и 12 не кратно 3;
3) или
4) 2<5;
5) если число 212 делится на 3 и 4, то оно делится на 12;
6) число 212 - трехзначное и кратно 3 или 4.
6. Какие из следующих импликаций истинны:
1) если 2х2=4, то 2<3;
2) если 2х2=4, то 2>3;
3) если 2х2=5, то 2<3;
4) если 2х2=5, то 2>3?
7. Найдите логические значения х и у, при которых выполняются равенства:
8. Известно, что импликация х у истинна, а эквивалентность х у ложна. Что можно сказать о значении импликации у х ?
9. Известно, что эквивалентность х у истинна. Что можно сказать о значении и ?
10. Известно, что х имеет значение 1. Что можно сказать о значениях импликации
11. Известно, что х у имеет значение 1. Что можно сказать о значениях
12. Пусть х = 0, у = 1, z = 1 Определить логические значения нижеследующих сложных высказываний:
1 3. Составить таблицы истинности для формул:
7)
8)
Контрольные вопросы
Что называется высказыванием? Обозначения высказываний.
Определения простого (элементарного) и сложного (составного) высказываний.
Логические значения высказываний.
Что называется отрицанием простого высказывания? Привести таблицу истинности.
Что называется дизъюнкцией двух простых высказываний? Привести таблицу истинности.
Что называется конъюнкцией двух простых высказываний? Привести таблицу истинности.
Что называется импликацией двух простых высказываний? Привести таблицу истинности.
Что называется эквиваленцией двух простых высказываний? Привести таблицу истинности.
Определение формулы алгебры логики.
В какой последовательности выполняются логические операции?
- Лекция 2
- Лекция 3
- Лекция 4
- Лекция 5
- Лекция 13
- Лекция 14
- Лекция 16
- Основные понятия
- Понятие множества. Способы задания множеств.
- Понятие множества. Способы задания множеств.
- Отношения между множествами.
- 3, Операции над множествами.
- Алгебра множеств.
- Теорема о количестве подмножеств конечного множества.
- Формула включений и исключений.
- Лекция 2
- 1.Понятие вектора. Прямое произведение множеств.
- 2.Теорема о количестве элементов прямого произведения.
- Понятие вектора. Прямое произведение множеств.
- Теорема о количестве элементов прямого произведения.
- Лекция 3
- 2. Понятие высказывания.
- 3. Логические операции над высказываниями
- 4.Формулы алгебры логики.
- Лекция 4
- 2. Важнейшие равносильности алгебры логики.
- 3.Равносильные преобразования формул.
- Задачи для самостоятельного решения
- Лекция 5
- Дизъюнктивная нормальная форма.
- Конъюнктивная нормальная форма.
- Проблема разрешимости.
- Лекция 6
- Функции алгебры логики.
- 3. Представление произвольной функции алгебры логики в виде формулы алгебры логики.
- 4.Приложения алгебры логики в технике (релейно-контактные схемы).
- Контрольные вопросы
- Лекция 7
- Совершенная дизъюнктивная нормальная форма.
- Совершенная конъюнктивная нормальная форма.
- Совершенная дизъюнктивная нормальная форма.
- 2.Совершенная конъюнктивная нормальная форма.
- Лекция 8
- 2.Понятие минимальной днф. Метод минимизирующих карт.
- 3.Метод Квайна.
- 4.Метод Карно.
- 5.Постановка задачи минимизации в геометрической форме.
- 6.Сокращенная днф.
- 7.Тупиковая днф. Днф Квайна.
- Лекция 9
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Лекция 10
- Полная система . Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- Независимые системы. Базис замкнутого класса.
- Полная система. Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- 3. Независимые системы. Базис замкнутого класса.
- Лекция 11
- Понятие предиката.
- Логические операции над предикатами.
- 1. Понятие предиката
- 2. Логические операции над предикатами
- Лекция 12
- 2. Формулы логики предикатов.
- Значение формулы логики предикатов.
- 4. Равносильные формулы логики предикатов.
- Лекция 13
- Построение противоположных утверждений.
- 3. Прямая, обратная и противоположная теоремы.
- 4. Необходимые и достаточные условия.
- 5. Доказательство методом от противного.
- Задачи для самостоятельного решения
- Лекция 14
- 2. Использование метода математической индукции для нахождения сумм конечного числа слагаемых
- 3. Использование метода математической индукции для доказательства неравенств и делимости выражений, зависящих от n на некоторое число
- 4. Обобщение метода математической индукции
- Контрольные вопросы
- Лекция 15
- Операции над бинарными отношениями.
- 3. Свойства бинарных отношений.
- 4. Специальные бинарные отношения.
- Контрольные вопросы
- Лекция 16
- Функция
- 1. 4. Отображение
- Обратная функция
- 2. Свойства отображений и функций
- 3.Операции над функциями. Свойства операций
- Контрольные вопросы
- Лекция 17
- Основные понятия .
- 2. Смежность, инцидентность, степени вершин.
- 3. Способы задания графов
- Маршруты в неориентированном графе
- Операции над графами.
- Связность. Компоненты связности
- Контрольные вопросы
- Лекция 18
- 2. Метрические характеристики неориентированного графа
- Минимальные маршруты в нагруженных графах
- Задачи на деревьях
- Цикловой ранг графа. Цикломатическое число
- Контрольные вопросы
- Лекция 19
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи.
- Контрольные вопросы
- Лекция 20
- Двудольный граф. Условие существования двудольного графа
- Паросочетания . Реберные покрытия
- Двудольный граф. Условие существования двудольного графа
- Паросочетания. Реберные покрытия
- Контрольные вопросы
- Лекция 21
- Основные определения
- Алгоритм плоской укладки графа
- Контрольные вопросы
- Лекция 22
- Способы задания ориентированного графа
- Путь в ориентированном графе
- 4. Связность. Компоненты связности в орграфе
- Контрольные вопросы
- Лекция 23
- 2. Минимальные пути в нагруженных орграфах
- 3. Порядковая функция орграфа без контуров
- Контрольные вопросы