Лекция 3
ТЕМА: МАТЕМАТИЧЕСКАЯ ЛОГИКА. ОСНОВНЫЕ ПОНЯТИЯ.
ПЛАН:
Задачи и предмет логики.
Понятие высказывания.
Логические операции над высказываниями.
Формулы алгебры логики.
Главная
Задачи и предмет логики.
Математика является наукой, в которой все утверждения доказываются с помощью умозаключений, то есть путем использования законов человеческого мышления. Изучение законов человеческого мышления является предметом логики.
Как самостоятельная наука логика оформилась в трудах греческого философа Аристотеля (384-322 г. до в.э.). Он систематизировал известные до него сведения, и эта система стала впоследствии называться формальной или Аристотелевой логикой.
Формальная логика просуществовала без серьезных изменений более двадцати столетий. Естественно, что развитие математики выявило недостаточность Аристотелевой логики и потребовало дальнейшего ее развития.
Впервые в истории идеи о построении логики на математической основе были высказаны немецким математиком Г. Лейбницем (1646-1716) в конце ХVII века. Он считал, что основные понятия логики должны быть обозначены символами, которые соединяются по особым правилам. Это позволит всякое рассуждение заменить вычислением.
«Мы употребляем знаки не только для того, чтобы передать наши мысли другим лицам, но и для того, чтобы облегчить сам процесс нашего мышления» (Лейбниц).
Первая реализация идеи Лейбница принадлежит английскому ученому Д. Булю (1815-1864). Он создал алгебру, в которой буквами обозначены высказывания, и это привело к алгебре высказываний. Введение символических обозначений в логику имело для этой науки такое же решающее значение, как введение буквенных обозначений для математики. Именно благодаря введению символов в логику была получена основа для создания новой науки - математической логики.
Применение математики к логике позволило представить логические теории в новой удобной форме и применить вычислительный аппарат к решению задач,малодоступных человеческому мышлению, и это, конечно, расширило область логических исследований. К концу XIX столетия актуальное значение для математики приобрели вопросы обоснования ее основных понятий и идей. Эти задачи имели логическую природу и, естественно, приведи к дальнейшему развитию математической логики.
Особенности математического мышления объясняются особенностями математических абстракций и многообразием их взаимосвязей. Они отражаются в логической систематизации математики, в доказательстве математических теорем. В связи с этим современную математическую логику определяют как раздел математики, посвященный изучению математических доказательств и вопросов оснований математики.
Одной из основных причин развития математической логики является широкое распространение аксиоматического метода в построении различных математических теорий, в первую очередь, геометрии, а затем арифметики, теории групп и т. д.
В аксиоматическом построении математической теории предварительно выбирается некоторая система неопределяемых понятий и отношения между ними. Эти понятия и отношения называются основными. Далее без доказательства принимаются основные положения рассматриваемой теории - аксиомы. Все дальнейшее содержание теории выводится логически из аксиом. Впервые аксиоматическое построение математической теории было предпринято Евклидом в построении геометрии.
Изложение этой теории в «Началах» Евклида не безупречно. Евклид здесь пытается дать определение исходных понятия (точки, прямой, плоскости). В доказательстве теорем используются нигде явно не сформулированные положения, которые считаются очевидными. Таким образом, в этом построении отсутствует необходимая логическая строгость. Отметим, что такой подход к аксиоматическому построению теории оставался единственным до XIX века. Большую роль в изменении такого подхода сыграли работы Н. И. Лобачевского (1792-1856).
Лобачевский впервые в явном виде высказал убеждение в невозможности доказательства пятого постулата Евклида (через точку, не лежащую на прямой проходит одна и только одна прямая, параллельная данной прямой) и подкрепил это убеждение созданием новой геометрии. Позже немецкий математик Ф. Клейн (1849-1925) доказал непротиворечивость геометрии Лобачевского, чем фактически была доказана и невозможность доказательства пятого постулата Евклида.
Так возникли и были решены в работах Н. И. Лобачевского и Ф. Клейна впервые в истории математики проблемы невозможности доказательства и непротиворечивости в аксиоматической теории.
Yandex.RTB R-A-252273-3
- Лекция 2
- Лекция 3
- Лекция 4
- Лекция 5
- Лекция 13
- Лекция 14
- Лекция 16
- Основные понятия
- Понятие множества. Способы задания множеств.
- Понятие множества. Способы задания множеств.
- Отношения между множествами.
- 3, Операции над множествами.
- Алгебра множеств.
- Теорема о количестве подмножеств конечного множества.
- Формула включений и исключений.
- Лекция 2
- 1.Понятие вектора. Прямое произведение множеств.
- 2.Теорема о количестве элементов прямого произведения.
- Понятие вектора. Прямое произведение множеств.
- Теорема о количестве элементов прямого произведения.
- Лекция 3
- 2. Понятие высказывания.
- 3. Логические операции над высказываниями
- 4.Формулы алгебры логики.
- Лекция 4
- 2. Важнейшие равносильности алгебры логики.
- 3.Равносильные преобразования формул.
- Задачи для самостоятельного решения
- Лекция 5
- Дизъюнктивная нормальная форма.
- Конъюнктивная нормальная форма.
- Проблема разрешимости.
- Лекция 6
- Функции алгебры логики.
- 3. Представление произвольной функции алгебры логики в виде формулы алгебры логики.
- 4.Приложения алгебры логики в технике (релейно-контактные схемы).
- Контрольные вопросы
- Лекция 7
- Совершенная дизъюнктивная нормальная форма.
- Совершенная конъюнктивная нормальная форма.
- Совершенная дизъюнктивная нормальная форма.
- 2.Совершенная конъюнктивная нормальная форма.
- Лекция 8
- 2.Понятие минимальной днф. Метод минимизирующих карт.
- 3.Метод Квайна.
- 4.Метод Карно.
- 5.Постановка задачи минимизации в геометрической форме.
- 6.Сокращенная днф.
- 7.Тупиковая днф. Днф Квайна.
- Лекция 9
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Лекция 10
- Полная система . Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- Независимые системы. Базис замкнутого класса.
- Полная система. Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- 3. Независимые системы. Базис замкнутого класса.
- Лекция 11
- Понятие предиката.
- Логические операции над предикатами.
- 1. Понятие предиката
- 2. Логические операции над предикатами
- Лекция 12
- 2. Формулы логики предикатов.
- Значение формулы логики предикатов.
- 4. Равносильные формулы логики предикатов.
- Лекция 13
- Построение противоположных утверждений.
- 3. Прямая, обратная и противоположная теоремы.
- 4. Необходимые и достаточные условия.
- 5. Доказательство методом от противного.
- Задачи для самостоятельного решения
- Лекция 14
- 2. Использование метода математической индукции для нахождения сумм конечного числа слагаемых
- 3. Использование метода математической индукции для доказательства неравенств и делимости выражений, зависящих от n на некоторое число
- 4. Обобщение метода математической индукции
- Контрольные вопросы
- Лекция 15
- Операции над бинарными отношениями.
- 3. Свойства бинарных отношений.
- 4. Специальные бинарные отношения.
- Контрольные вопросы
- Лекция 16
- Функция
- 1. 4. Отображение
- Обратная функция
- 2. Свойства отображений и функций
- 3.Операции над функциями. Свойства операций
- Контрольные вопросы
- Лекция 17
- Основные понятия .
- 2. Смежность, инцидентность, степени вершин.
- 3. Способы задания графов
- Маршруты в неориентированном графе
- Операции над графами.
- Связность. Компоненты связности
- Контрольные вопросы
- Лекция 18
- 2. Метрические характеристики неориентированного графа
- Минимальные маршруты в нагруженных графах
- Задачи на деревьях
- Цикловой ранг графа. Цикломатическое число
- Контрольные вопросы
- Лекция 19
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи.
- Контрольные вопросы
- Лекция 20
- Двудольный граф. Условие существования двудольного графа
- Паросочетания . Реберные покрытия
- Двудольный граф. Условие существования двудольного графа
- Паросочетания. Реберные покрытия
- Контрольные вопросы
- Лекция 21
- Основные определения
- Алгоритм плоской укладки графа
- Контрольные вопросы
- Лекция 22
- Способы задания ориентированного графа
- Путь в ориентированном графе
- 4. Связность. Компоненты связности в орграфе
- Контрольные вопросы
- Лекция 23
- 2. Минимальные пути в нагруженных орграфах
- 3. Порядковая функция орграфа без контуров
- Контрольные вопросы