2. Использование метода математической индукции для нахождения сумм конечного числа слагаемых
Этот метод можно эффективно использовать для нахождения формул вычисления сумм, когда число слагаемых зависит от n, доказательства тождеств, доказательства неравенств, у которых одна или обе части зависят от n.
Пример 1. Пусть дана последовательность (n) натуральных чисел. Найдем формулу вычисления суммы первых n чисел:
S(n)=l+2 + 3 + ... + n.
Решение. Рассмотрим S(1), S(2), S(3), S(4). Мы имеем:
S(l)=l,
S(2)=1+2 = 3,
S(3)=1+2 + 3 = 6,
S(4)=1+2 + 3 + 4=10.
Заметив, что полученные числа можно записать в виде
естественно сделать предположение, что
(1)
Применим теперь метод математической индукции для доказательства полученной формулы (1).
При n = 1: S(1) = 12/2=1.
Формула верна при n = 1. Предположим, что формула верна при n = k > 1:
Тогда
'Значит, из справедливости формулы для n = k вытекает ее справедливость для n = k + 1 По принципу математической индукции отсюда вытекает справедливость формулы (1) для всех натуральных значений n.
В некоторых случаях для доказательства тождества Р(n) = Q (n) можем сначала убедиться, что Р (1) = Q (1), и, предполагая справедливость равенства P(k)=Q(k), k>1, доказать тождество P(k + 1) = Q(k + 1). Тогда из истинности равенства P(k) = Q(k) будет следовать истинность равенства P(k + 1) = Q(k + 1)и по принципу математической индукции будет следовать истинность тождества P(n)=Q(n) для всех n.
Пример 2. Рассмотрим последовательность (n2) квадратов натуральных чисел. Докажем справедливость формулы для вычисления суммы первых n членов этой последовательности:
(2)
Обозначим l2 + 22 + 32 + ... + n2 = S (n) и
При n = 1: S(1) = 1, Т.е. S(1) = P(1).
Предполагаем теперь, что равенство верно для n = k, k > 1, т. е. S(k) = P(k).
Рассмотрим разности:
Итак, мы доказали, что S(1) = P(1) и S(k+l) - S (k) = = P (k+1) - P (k). Тогда по принципу математической индукции тождество (2) справедливо для всех n.
Ранее доказанные формулы могут служить источником получения новых формул.
Пример 3. Пусть дана последовательность (n3) кубов натуральных чисел. Выведем формулу для вычисления суммы первых n членов этой последовательности:
S(n)=l3 + 23 + 33 + … + n3.
Как и в примере 1, рассмотрим суммы S(1), S (2), S (3), S (4). Здесь мы имеем:
S(l)=l,
S(2)=l3 + 23 = 9,
S(3)=l3 + 23 + 33 = 36,
S (4)= 13 + 23 + 33 + 43= 100.
Поскольку мы предполагали, что S(k) = P(k), то отсюда следует равенство S (k+ 1) = P (k + 1). Следовательно, по принципу математической индукции формула (3) справедлива для всех n.
Yandex.RTB R-A-252273-3- Лекция 2
- Лекция 3
- Лекция 4
- Лекция 5
- Лекция 13
- Лекция 14
- Лекция 16
- Основные понятия
- Понятие множества. Способы задания множеств.
- Понятие множества. Способы задания множеств.
- Отношения между множествами.
- 3, Операции над множествами.
- Алгебра множеств.
- Теорема о количестве подмножеств конечного множества.
- Формула включений и исключений.
- Лекция 2
- 1.Понятие вектора. Прямое произведение множеств.
- 2.Теорема о количестве элементов прямого произведения.
- Понятие вектора. Прямое произведение множеств.
- Теорема о количестве элементов прямого произведения.
- Лекция 3
- 2. Понятие высказывания.
- 3. Логические операции над высказываниями
- 4.Формулы алгебры логики.
- Лекция 4
- 2. Важнейшие равносильности алгебры логики.
- 3.Равносильные преобразования формул.
- Задачи для самостоятельного решения
- Лекция 5
- Дизъюнктивная нормальная форма.
- Конъюнктивная нормальная форма.
- Проблема разрешимости.
- Лекция 6
- Функции алгебры логики.
- 3. Представление произвольной функции алгебры логики в виде формулы алгебры логики.
- 4.Приложения алгебры логики в технике (релейно-контактные схемы).
- Контрольные вопросы
- Лекция 7
- Совершенная дизъюнктивная нормальная форма.
- Совершенная конъюнктивная нормальная форма.
- Совершенная дизъюнктивная нормальная форма.
- 2.Совершенная конъюнктивная нормальная форма.
- Лекция 8
- 2.Понятие минимальной днф. Метод минимизирующих карт.
- 3.Метод Квайна.
- 4.Метод Карно.
- 5.Постановка задачи минимизации в геометрической форме.
- 6.Сокращенная днф.
- 7.Тупиковая днф. Днф Квайна.
- Лекция 9
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Лекция 10
- Полная система . Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- Независимые системы. Базис замкнутого класса.
- Полная система. Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- 3. Независимые системы. Базис замкнутого класса.
- Лекция 11
- Понятие предиката.
- Логические операции над предикатами.
- 1. Понятие предиката
- 2. Логические операции над предикатами
- Лекция 12
- 2. Формулы логики предикатов.
- Значение формулы логики предикатов.
- 4. Равносильные формулы логики предикатов.
- Лекция 13
- Построение противоположных утверждений.
- 3. Прямая, обратная и противоположная теоремы.
- 4. Необходимые и достаточные условия.
- 5. Доказательство методом от противного.
- Задачи для самостоятельного решения
- Лекция 14
- 2. Использование метода математической индукции для нахождения сумм конечного числа слагаемых
- 3. Использование метода математической индукции для доказательства неравенств и делимости выражений, зависящих от n на некоторое число
- 4. Обобщение метода математической индукции
- Контрольные вопросы
- Лекция 15
- Операции над бинарными отношениями.
- 3. Свойства бинарных отношений.
- 4. Специальные бинарные отношения.
- Контрольные вопросы
- Лекция 16
- Функция
- 1. 4. Отображение
- Обратная функция
- 2. Свойства отображений и функций
- 3.Операции над функциями. Свойства операций
- Контрольные вопросы
- Лекция 17
- Основные понятия .
- 2. Смежность, инцидентность, степени вершин.
- 3. Способы задания графов
- Маршруты в неориентированном графе
- Операции над графами.
- Связность. Компоненты связности
- Контрольные вопросы
- Лекция 18
- 2. Метрические характеристики неориентированного графа
- Минимальные маршруты в нагруженных графах
- Задачи на деревьях
- Цикловой ранг графа. Цикломатическое число
- Контрольные вопросы
- Лекция 19
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи.
- Контрольные вопросы
- Лекция 20
- Двудольный граф. Условие существования двудольного графа
- Паросочетания . Реберные покрытия
- Двудольный граф. Условие существования двудольного графа
- Паросочетания. Реберные покрытия
- Контрольные вопросы
- Лекция 21
- Основные определения
- Алгоритм плоской укладки графа
- Контрольные вопросы
- Лекция 22
- Способы задания ориентированного графа
- Путь в ориентированном графе
- 4. Связность. Компоненты связности в орграфе
- Контрольные вопросы
- Лекция 23
- 2. Минимальные пути в нагруженных орграфах
- 3. Порядковая функция орграфа без контуров
- Контрольные вопросы