Лекция 5
ТЕМА: ЗАКОН ДВОЙСТВЕННОСТИ. ДИЗЪЮНКТИВНАЯ И КОНЪЮНКТИВНАЯ НОРМАЛЬНЫЕ ФОРМЫ ФОРМУЛ АЛГЕБРЫ ЛОГИКИ.
ПЛАН:
Закон двойственности.
Дизъюнктивная нормальная форма.
Конъюнктивная нормальная форма.
Проблема разрешимости.
Главная
Закон двойственности.
Пусть формула А содержит только операции конъюнкции, дизъюнкции и отрицания. Операция конъюнкции называется двойственной для операции дизъюнкции, а операция дизъюнкции называется двойственной для операции конъюнкции.
Определение: Формулы А и А* называются двойственными, если формула А* получается из формулы А путем замены в ней каждой операции на двойственную.
Примеры: Для формулы А (х v y)z двойственной является А* х y v z.
Для формулы двойственной является
Прежде чем ввести принцип двойственности , рассмотрим лемму.
Лемма 1: Пусть А формула, х1, х2,…, хк - список простых входящих в формулу высказываний. Тогда А принимает значение 1 на значениях (s1, s2,…, sk) тогда и только тогда, когда двойственная формула А* принимает значение 0 на множестве (t1, t2, …, tk), которое получено из множества (s1, s2,…, sk) путем замены 1 на 0 и 0 на 1.
Продемонстрируем справедливость леммы на примере :
Двойственная:
Составим таблицы истинности для формул. (Порядок действий проставьте самостоятельно). Обе таблицы будут содержать четыре строки.
Для формулы А.
х | у | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
0 | 0 | 1 | 1 | 1 | 0 | 1 | 0 | 0 |
1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
Для формулы А*.
х | у | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
1 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 |
0 | 1 | 1 | 0 | 1 | 0 | 1 | 1 | 0 |
Лемма 2. Если для формулы А( х1, х2,…, хк ) двойственной является А*( х1, х2,…, хк), то справедлива равносильность:
Примеры:
1. А х v y, двойственная ей А* ху. Составим отрицание формулы А:
Составить двойственную формулу для формулы и проверить справедливость леммы 2.
Преобразуем формулу А: Двойственная формула
Составим отрицание формулы А:
Используя выше приведенные леммы можно доказать закон (принцип) двойственности, который используется при составлении равносильностей.
Теорема: Если формулы А и В равносильны, то равносильны и им двойственные формулы, то есть А* В*.
Например, проверив справедливость основных законов алгебры логики для дизъюнкции, можно составить аналогичные законы и для конъюнкции.
Yandex.RTB R-A-252273-3
- Лекция 2
- Лекция 3
- Лекция 4
- Лекция 5
- Лекция 13
- Лекция 14
- Лекция 16
- Основные понятия
- Понятие множества. Способы задания множеств.
- Понятие множества. Способы задания множеств.
- Отношения между множествами.
- 3, Операции над множествами.
- Алгебра множеств.
- Теорема о количестве подмножеств конечного множества.
- Формула включений и исключений.
- Лекция 2
- 1.Понятие вектора. Прямое произведение множеств.
- 2.Теорема о количестве элементов прямого произведения.
- Понятие вектора. Прямое произведение множеств.
- Теорема о количестве элементов прямого произведения.
- Лекция 3
- 2. Понятие высказывания.
- 3. Логические операции над высказываниями
- 4.Формулы алгебры логики.
- Лекция 4
- 2. Важнейшие равносильности алгебры логики.
- 3.Равносильные преобразования формул.
- Задачи для самостоятельного решения
- Лекция 5
- Дизъюнктивная нормальная форма.
- Конъюнктивная нормальная форма.
- Проблема разрешимости.
- Лекция 6
- Функции алгебры логики.
- 3. Представление произвольной функции алгебры логики в виде формулы алгебры логики.
- 4.Приложения алгебры логики в технике (релейно-контактные схемы).
- Контрольные вопросы
- Лекция 7
- Совершенная дизъюнктивная нормальная форма.
- Совершенная конъюнктивная нормальная форма.
- Совершенная дизъюнктивная нормальная форма.
- 2.Совершенная конъюнктивная нормальная форма.
- Лекция 8
- 2.Понятие минимальной днф. Метод минимизирующих карт.
- 3.Метод Квайна.
- 4.Метод Карно.
- 5.Постановка задачи минимизации в геометрической форме.
- 6.Сокращенная днф.
- 7.Тупиковая днф. Днф Квайна.
- Лекция 9
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Лекция 10
- Полная система . Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- Независимые системы. Базис замкнутого класса.
- Полная система. Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- 3. Независимые системы. Базис замкнутого класса.
- Лекция 11
- Понятие предиката.
- Логические операции над предикатами.
- 1. Понятие предиката
- 2. Логические операции над предикатами
- Лекция 12
- 2. Формулы логики предикатов.
- Значение формулы логики предикатов.
- 4. Равносильные формулы логики предикатов.
- Лекция 13
- Построение противоположных утверждений.
- 3. Прямая, обратная и противоположная теоремы.
- 4. Необходимые и достаточные условия.
- 5. Доказательство методом от противного.
- Задачи для самостоятельного решения
- Лекция 14
- 2. Использование метода математической индукции для нахождения сумм конечного числа слагаемых
- 3. Использование метода математической индукции для доказательства неравенств и делимости выражений, зависящих от n на некоторое число
- 4. Обобщение метода математической индукции
- Контрольные вопросы
- Лекция 15
- Операции над бинарными отношениями.
- 3. Свойства бинарных отношений.
- 4. Специальные бинарные отношения.
- Контрольные вопросы
- Лекция 16
- Функция
- 1. 4. Отображение
- Обратная функция
- 2. Свойства отображений и функций
- 3.Операции над функциями. Свойства операций
- Контрольные вопросы
- Лекция 17
- Основные понятия .
- 2. Смежность, инцидентность, степени вершин.
- 3. Способы задания графов
- Маршруты в неориентированном графе
- Операции над графами.
- Связность. Компоненты связности
- Контрольные вопросы
- Лекция 18
- 2. Метрические характеристики неориентированного графа
- Минимальные маршруты в нагруженных графах
- Задачи на деревьях
- Цикловой ранг графа. Цикломатическое число
- Контрольные вопросы
- Лекция 19
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи.
- Контрольные вопросы
- Лекция 20
- Двудольный граф. Условие существования двудольного графа
- Паросочетания . Реберные покрытия
- Двудольный граф. Условие существования двудольного графа
- Паросочетания. Реберные покрытия
- Контрольные вопросы
- Лекция 21
- Основные определения
- Алгоритм плоской укладки графа
- Контрольные вопросы
- Лекция 22
- Способы задания ориентированного графа
- Путь в ориентированном графе
- 4. Связность. Компоненты связности в орграфе
- Контрольные вопросы
- Лекция 23
- 2. Минимальные пути в нагруженных орграфах
- 3. Порядковая функция орграфа без контуров
- Контрольные вопросы