Формула включений и исключений.
Проиллюстрируем теперь применение операций над множествами для решения задач о нахождении числа элементов множеств, заданных несколькими условиями. Ниже мы будем рассматривать только конечные множества.
Пример: В классе 30 учащихся, 16 из них занимаются музыкой, 17 увлекаются теннисом, а 10 занимаются и музыкой, и теннисом. Есть ли в классе ученики, равнодушные и к музыке, и к теннису, и если есть, то сколько их?
Решение: Если сложить число учащихся, интересующихся музыкой, с числом учащихся, занимающихся теннисом, т. е. 16+17=33, то учащиеся, интересующиеся и музыкой, и теннисом, окажутся учтенными дважды. Поэтому, чтобы определить число учащихся, интересующихся музыкой или теннисом, нужно из суммы 16+17 вычесть число учащихся, учтенных дважды, т. е. тех, кто интересуется и музыкой, и теннисом. По условию их 10. Таким образом, число интересующихся теннисом или музыкой равно: 16+17—10=23 ученика. А так как в классе всего 30 учащихся, то 30—23 ==7 учащихся равнодушны и к музыке, и к теннису.
Задача решена по следующему алгоритму: пусть имеется два конечных множества А и В. Тогда:
п(А В) = п(А) + п(В )- п(А В) (1)
В нашем случае А — множество учащихся, интересующихся музыкой, и n(A) = 16, В—множество учащихся, интересующихся теннисом, и n(B) = 17, n(AB) =10, и тогда по полученной формуле n(AUВ)=16+17-10=23.
Усложним задачу: пусть к тем, кто интересуется в классе музыкой — множеству А, и к тем, кто увлекается теннисом — множеству В, добавляются еще и те, кто интересуется театром— множество С. Сколько учеников увлекается или музыкой, или теннисом, или театром, т. е. чему равно число n{A B C)?
Если множества А, В и С пересекаются лишь попарно, т. е. АВС=, то подсчет можно вести, как и прежде: сначала сложить п(А)+п(В)+п(С), а затем вычесть число тех элементов, которые подсчитаны дважды, т. е. вычесть число n{A B}+n(A C)+n(B C). Если же множество АВС,, то его элементы оказались неучтенными: сначала их трижды учли, когда складывали п(А}+п (В)+п(С), а затем трижды отнимали их, вычитая n{A B}+n(A C)+n(B C).
Таким образом, число
п(А)+п(В)+п(С )- (n{A B}+n(A C)+n(B C))
меньше истинного результата ровно на число элементов в пересечении множеств АВС, которое и следует добавить для получения верного результата:
п(А)+п(В)+п(С )- (n{A B}+n(A C)+n(B C))+п(А В С) (2)
Аналогичная формула может быть получена для любого числа множеств.
В формулах (1) и (2) подсчитывается, сколько раз каждый элемент включается и исключается, поэтому их называют формулами включений и исключений.
Рассмотрим несколько примеров применения полученных формул.
Пример1: На вступительном экзамене по математике были предложены три задачи: по алгебре, планиметрии и стереометрии. Из 1000 абитуриентов задачу по алгебре решили 800, по планиметрии — 700, а по стереометрии — 600 абитуриентов. При этом задачи по алгебре и планиметрии решили 600 абитуриентов, по алгебре и стереометрии — 500, по планиметрии и стереометрии — 400. Все три задачи решили 300 абитуриентов. Существуют ли абитуриенты, не решившие ни одной задачи, и если да, то сколько их?
Решение. Пусть U — множество всех абитуриентов, А —. множество абитуриентов, решивших задачу по алгебре, В — множество абитуриентов, решивших задачу по планиметрии, С — множество абитуриентов, решивших задачу по стереометрии. По условию n(U) =1000, n(A) = 800, n(В)=700, n(С)=600, n(AB)= 600, n(AC) = 500, n(BC) = 400, n(ABC) =300. В множество ABC включены все абитуриенты, решившие хотя бы одну задачу. По формуле (2) имеем:
n(А U В U С) == 800 + 700 + 600 - 600 - 500 - 400 + 300 =900.
Отсюда следует, что не все поступающие решили хотя бы одну задачу. Ни одной задачи не решили
n(U) - n(AUBUC)=1000 - 900==100 (абитуриентов).
Пример2: Социологи опросили 45 учащихся девятых классов, среди которых 25 юношей. При этом выяснилось: 30 человек имеют за полугодие оценки 4 и 5, из них 16 юношей, спортом занимаются 28 учеников, среди них 18 юношей, и 17 учеников, успевающих только на хорошо и отлично, 15 юношей учатся на хорошо и отлично и занимаются спортом. Первый математик класса взглянул на результаты и заявил, что там есть ошибки. Как это ему удалось выяснить?
Решение: Обозначим через А множество юношей, В — множество успевающих на 4 и 5, С — множество спортсменов. По условию задачи n(A)=25, n(В)=30, n(С)=28, n(AB)=16, n(AC)=18, n(BC)=17, n(ABC)=15. Найдем общее число учащихся, которые или являются юношами, или занимаются спортом, или успевают на 4 и 5. По формуле (2) получаем:
n (A UBUC)=25+30+28- 16- 18- 17+15=47. Этого быть не может, так как обследовалось всего 45 учеников! Следовательно, в данных сведениях есть ошибки.
На рисунке это решение проиллюстрировано с помощью диаграммы Эйлера — Венна.
В пересечении множеств А, В и С запишем число 15, так как по условию n(ABC)=15. В множестве AB\С запишем число 16—15=1, в множестве BC\А - число 18-15=3, в множестве BC\А—число 17-15=2, в множестве A\(BC)— число 25-(1+15+3)=6, в множестве В\(А C) — число 30-(1 + 15+2)= 12, в множестве С\(АВ)— число 28-(3+15+2)=8. Чтобы найти n(АВС), достаточно сложить записанные числа, поскольку они соответствуют множествам, не пересекающимся между собой. Получим число 47 > 45, что невозможно по условию задачи.
Задачи для самостоятельного решения
Опишите множество М точек на плоскости: a) {M| OM = R}; б) {M| OM R}; в) {M| AM = MB}.
Даны множества : Построить множество ((АВ)(В\С)) . Найти количество подмножеств построенного множества. Показать соответствующую диаграмму Эйлера – Венна.
Доказать с помощью диаграмм Эйлера – Венна справедливость закона поглощения.
Доказать тождества с помощью диаграмм и путем преобразований:
В отделе института работают несколько человек. Каждый из них знает хотя бы один иностранный язык, причем: 6 знают немецкий, 6 – английский, 7 – французский, 4 – английский и немецкий, 3 – немецкий и французский, 2 – французский и английский, 1 – все три языка. Сколько всего человек работает в отделе? Сколько из них знают только английский?
Из 35 учащихся класса 20 посещают математический кружок, 11 – физический, 10 – не посещают кружки. Сколько учеников посещают математический и физический кружки одновременно, сколько – только математический?
Контрольные вопросы
Объясните понятие множества. Приведите примеры множеств. Как обозначаются множества и их элементы?
Какие существуют способы задания множеств?
С помощью характеристического свойства задайте конечное, бесконечное несчетное, бесконечное счетное и пустое множества.
Как обозначается принадлежность элемента множеству и не принадлежность?
Какие существуют отношения между двумя множествами?
Перечислите операции над множествами с приведением соответствующих диаграмм Эйлера – Венна.
Перечислите тождества алгебры множеств.
Сформулируйте теорему о количестве подмножеств конечного множества.
Запишите формулы количества элементов в объединении двух и трех множеств.
- Лекция 2
- Лекция 3
- Лекция 4
- Лекция 5
- Лекция 13
- Лекция 14
- Лекция 16
- Основные понятия
- Понятие множества. Способы задания множеств.
- Понятие множества. Способы задания множеств.
- Отношения между множествами.
- 3, Операции над множествами.
- Алгебра множеств.
- Теорема о количестве подмножеств конечного множества.
- Формула включений и исключений.
- Лекция 2
- 1.Понятие вектора. Прямое произведение множеств.
- 2.Теорема о количестве элементов прямого произведения.
- Понятие вектора. Прямое произведение множеств.
- Теорема о количестве элементов прямого произведения.
- Лекция 3
- 2. Понятие высказывания.
- 3. Логические операции над высказываниями
- 4.Формулы алгебры логики.
- Лекция 4
- 2. Важнейшие равносильности алгебры логики.
- 3.Равносильные преобразования формул.
- Задачи для самостоятельного решения
- Лекция 5
- Дизъюнктивная нормальная форма.
- Конъюнктивная нормальная форма.
- Проблема разрешимости.
- Лекция 6
- Функции алгебры логики.
- 3. Представление произвольной функции алгебры логики в виде формулы алгебры логики.
- 4.Приложения алгебры логики в технике (релейно-контактные схемы).
- Контрольные вопросы
- Лекция 7
- Совершенная дизъюнктивная нормальная форма.
- Совершенная конъюнктивная нормальная форма.
- Совершенная дизъюнктивная нормальная форма.
- 2.Совершенная конъюнктивная нормальная форма.
- Лекция 8
- 2.Понятие минимальной днф. Метод минимизирующих карт.
- 3.Метод Квайна.
- 4.Метод Карно.
- 5.Постановка задачи минимизации в геометрической форме.
- 6.Сокращенная днф.
- 7.Тупиковая днф. Днф Квайна.
- Лекция 9
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Лекция 10
- Полная система . Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- Независимые системы. Базис замкнутого класса.
- Полная система. Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- 3. Независимые системы. Базис замкнутого класса.
- Лекция 11
- Понятие предиката.
- Логические операции над предикатами.
- 1. Понятие предиката
- 2. Логические операции над предикатами
- Лекция 12
- 2. Формулы логики предикатов.
- Значение формулы логики предикатов.
- 4. Равносильные формулы логики предикатов.
- Лекция 13
- Построение противоположных утверждений.
- 3. Прямая, обратная и противоположная теоремы.
- 4. Необходимые и достаточные условия.
- 5. Доказательство методом от противного.
- Задачи для самостоятельного решения
- Лекция 14
- 2. Использование метода математической индукции для нахождения сумм конечного числа слагаемых
- 3. Использование метода математической индукции для доказательства неравенств и делимости выражений, зависящих от n на некоторое число
- 4. Обобщение метода математической индукции
- Контрольные вопросы
- Лекция 15
- Операции над бинарными отношениями.
- 3. Свойства бинарных отношений.
- 4. Специальные бинарные отношения.
- Контрольные вопросы
- Лекция 16
- Функция
- 1. 4. Отображение
- Обратная функция
- 2. Свойства отображений и функций
- 3.Операции над функциями. Свойства операций
- Контрольные вопросы
- Лекция 17
- Основные понятия .
- 2. Смежность, инцидентность, степени вершин.
- 3. Способы задания графов
- Маршруты в неориентированном графе
- Операции над графами.
- Связность. Компоненты связности
- Контрольные вопросы
- Лекция 18
- 2. Метрические характеристики неориентированного графа
- Минимальные маршруты в нагруженных графах
- Задачи на деревьях
- Цикловой ранг графа. Цикломатическое число
- Контрольные вопросы
- Лекция 19
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи.
- Контрольные вопросы
- Лекция 20
- Двудольный граф. Условие существования двудольного графа
- Паросочетания . Реберные покрытия
- Двудольный граф. Условие существования двудольного графа
- Паросочетания. Реберные покрытия
- Контрольные вопросы
- Лекция 21
- Основные определения
- Алгоритм плоской укладки графа
- Контрольные вопросы
- Лекция 22
- Способы задания ориентированного графа
- Путь в ориентированном графе
- 4. Связность. Компоненты связности в орграфе
- Контрольные вопросы
- Лекция 23
- 2. Минимальные пути в нагруженных орграфах
- 3. Порядковая функция орграфа без контуров
- Контрольные вопросы