logo search
Лекции ДМ

Понятие множества. Способы задания множеств.

Множество - это совокупность, класс отличающихся друг от друга объектов, объединенных каким-либо общим свойством. Объекты, входящие в эту совокупность, называются элементами множества.

Множества обозначаются заглавными буквами латинского алфавита , а элементы множества- строчными.

Приведем примеры множеств.

Классы (множества) чисел: N – натуральные числа, Z – целые числа, Q- рациональные числа, R- действительные (вещественные) числа, C – комплексные числа.

Студенты одной группы – множество, элементы которого- студенты, общее свойство – обучение одной специальности.

Множество В – корни уравнения ½ = cosx . Элементы – вещественные числа, общее свойство – обращают данное уравнение в верное равенство.

Если х – элемент множества Х, то говорят: х принадлежит Х и пишут : хХ. Если х не принадлежит Х, то пишут хХ.

С видами множеств вы знакомились при изучении элементов высшей математики, поэтому лишь напомним их : конечные множества, бесконечные, пустые, универсальные.

Конечные и бесконечные множества в свою очередь подразделяются на неупорядоченные и упорядоченные; неупорядоченные бесконечные – на счетные и несчетные.

Рассмотрим два основных способа задания неупорядоченных множеств:

  1. перечисление всех его элементов;

  2. описание характеристического (общего) свойства его элементов.

Первым способом задаются конечные множества.

Примеры:

А – множество чисел, являющихся делителями числа 20: А = {1, 2, 4, 5, 10, 20}.

В – список группы: В = {Архипов, Белов,…}.

Вторым способом можно задать конечные множества, бесконечные, пустые. Множество элементов. Обладающих характеристическим свойством Р, обозначается:

{x | P(x)} и читается так: множество всех х таких, что х обладает свойством Р(х).

Примеры:

{x | x R, x2 – 4 = 0} - это конечное множество и его можно задать перечислением элементов : {2, -2}.

{x | x  R, 2< x < 5 } – бесконечное несчетное множество, а именно, числовой промежуток (2, 5).

{x | x  R, 1= sinx} – бесконечное счетное множество.

{x | x  R, x2 + 9 = 0 } – это пустое множество, т.к. ни одно вещественное число не удовлетворяет данному уравнению.