Цикловой ранг графа. Цикломатическое число
Если G(V, X) не является ациклическим графом, то в нем можно выделить цикл.
Независимыми называются циклы графа G, если они отличаются хотя бы одним ребром.
Множество всех независимых простых циклов, которые можно выделить в мультиграфе составляют цикловой базис графа.
Количество простых циклов в базисе называется цикломатическим числом или циклическим рангом графа G.
Обзначим цикломатическое число через (G).
Справедливо утверждение:
Если G(V, X) – связный граф, то (G) = m(G) – n(G) + p(G), где m(G) – количество ребер в графе, n(G) – количество вершин в графе, p(G) – количество компонент связности в графе.
Так, например, для дерева не существует цикловой базис, т.к. в дереве m = n – 1, р = 1(дерево – связный граф). Тогда цикломатическое число равно (G) = n – 1 – n +1 = 0. Следовательно в базисе нет ни одного цикла.
Рассмотрим алгоритм нахождения циклового базиса связного мультиграфа.
Если (G) = 0, то граф ациклический, циклового базиса не существует.
Пусть (G) > 0. Выделим в G любое остовное дерево Т. Пусть число вершин в графе G равно n, а число ребер – m. x1, x2,…, xn-1 – ребра в Т (остовное дерево содержит все вершины графа, а по свойству дерева число ребер на 1 меньше числа вершин), xn, xn+1,…, xm – остальные ребра графа G (заметим, что n 2, m n). Число последних ребер m – (n – 1) = m – n + 1, и совпадает с цикломатическим числом связного графа. Добавляя любое из ребер xi ( i = n, …, m) , к дереву Т, получаем некоторый подграф графа G, из которого выделяем простой цикл i-(n-1) , проходящий через ребро xi . Действуя таким образом, находим совокупность простых циклов {1, m-n+1}. Т.к. в каждом из циклов этой системы имеется ребро, не содержащееся в других циклах, то полученная система независимая, следовательно, является цикловым базисом графа G.
Используя данный алгоритм, определим цикловой базис мультиграфа, представленного на рисунке:
Вычислим цикломатическое число: n =4, m = 8, p =1, следовательно, (G) = 8 - 4 + 1 = 5. Значит, цикловой базис содержит 5 независимых циклов. Построим остовное дерево:
Добавим по одному удаленные из графа ребра и будем, таким образом, получать простые циклы:
Добавим ребро х3, получим цикл v1 x2 x3 x5 v1.
Добавим ребро x6 , выделим простой цикл: v1 x2 x3 x6 v1.
Добавим ребро x7 , выделим простой цикл: v1 x2 x7 x1 v1.
Добавим ребро x8 , выделим простой цикл: v1 x2 x8 x1 v1.
Добавим ребро x4 , выделим простой цикл: v1 x2 x3 x4 х1 v1.
Получили пять циклов, составляющих цикловой базис графа.
- Лекция 2
- Лекция 3
- Лекция 4
- Лекция 5
- Лекция 13
- Лекция 14
- Лекция 16
- Основные понятия
- Понятие множества. Способы задания множеств.
- Понятие множества. Способы задания множеств.
- Отношения между множествами.
- 3, Операции над множествами.
- Алгебра множеств.
- Теорема о количестве подмножеств конечного множества.
- Формула включений и исключений.
- Лекция 2
- 1.Понятие вектора. Прямое произведение множеств.
- 2.Теорема о количестве элементов прямого произведения.
- Понятие вектора. Прямое произведение множеств.
- Теорема о количестве элементов прямого произведения.
- Лекция 3
- 2. Понятие высказывания.
- 3. Логические операции над высказываниями
- 4.Формулы алгебры логики.
- Лекция 4
- 2. Важнейшие равносильности алгебры логики.
- 3.Равносильные преобразования формул.
- Задачи для самостоятельного решения
- Лекция 5
- Дизъюнктивная нормальная форма.
- Конъюнктивная нормальная форма.
- Проблема разрешимости.
- Лекция 6
- Функции алгебры логики.
- 3. Представление произвольной функции алгебры логики в виде формулы алгебры логики.
- 4.Приложения алгебры логики в технике (релейно-контактные схемы).
- Контрольные вопросы
- Лекция 7
- Совершенная дизъюнктивная нормальная форма.
- Совершенная конъюнктивная нормальная форма.
- Совершенная дизъюнктивная нормальная форма.
- 2.Совершенная конъюнктивная нормальная форма.
- Лекция 8
- 2.Понятие минимальной днф. Метод минимизирующих карт.
- 3.Метод Квайна.
- 4.Метод Карно.
- 5.Постановка задачи минимизации в геометрической форме.
- 6.Сокращенная днф.
- 7.Тупиковая днф. Днф Квайна.
- Лекция 9
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Лекция 10
- Полная система . Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- Независимые системы. Базис замкнутого класса.
- Полная система. Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- 3. Независимые системы. Базис замкнутого класса.
- Лекция 11
- Понятие предиката.
- Логические операции над предикатами.
- 1. Понятие предиката
- 2. Логические операции над предикатами
- Лекция 12
- 2. Формулы логики предикатов.
- Значение формулы логики предикатов.
- 4. Равносильные формулы логики предикатов.
- Лекция 13
- Построение противоположных утверждений.
- 3. Прямая, обратная и противоположная теоремы.
- 4. Необходимые и достаточные условия.
- 5. Доказательство методом от противного.
- Задачи для самостоятельного решения
- Лекция 14
- 2. Использование метода математической индукции для нахождения сумм конечного числа слагаемых
- 3. Использование метода математической индукции для доказательства неравенств и делимости выражений, зависящих от n на некоторое число
- 4. Обобщение метода математической индукции
- Контрольные вопросы
- Лекция 15
- Операции над бинарными отношениями.
- 3. Свойства бинарных отношений.
- 4. Специальные бинарные отношения.
- Контрольные вопросы
- Лекция 16
- Функция
- 1. 4. Отображение
- Обратная функция
- 2. Свойства отображений и функций
- 3.Операции над функциями. Свойства операций
- Контрольные вопросы
- Лекция 17
- Основные понятия .
- 2. Смежность, инцидентность, степени вершин.
- 3. Способы задания графов
- Маршруты в неориентированном графе
- Операции над графами.
- Связность. Компоненты связности
- Контрольные вопросы
- Лекция 18
- 2. Метрические характеристики неориентированного графа
- Минимальные маршруты в нагруженных графах
- Задачи на деревьях
- Цикловой ранг графа. Цикломатическое число
- Контрольные вопросы
- Лекция 19
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи.
- Контрольные вопросы
- Лекция 20
- Двудольный граф. Условие существования двудольного графа
- Паросочетания . Реберные покрытия
- Двудольный граф. Условие существования двудольного графа
- Паросочетания. Реберные покрытия
- Контрольные вопросы
- Лекция 21
- Основные определения
- Алгоритм плоской укладки графа
- Контрольные вопросы
- Лекция 22
- Способы задания ориентированного графа
- Путь в ориентированном графе
- 4. Связность. Компоненты связности в орграфе
- Контрольные вопросы
- Лекция 23
- 2. Минимальные пути в нагруженных орграфах
- 3. Порядковая функция орграфа без контуров
- Контрольные вопросы