3. Использование метода математической индукции для доказательства неравенств и делимости выражений, зависящих от n на некоторое число
Метод математической индукции успешно применяется и при доказательстве различных неравенств, при этом используются свойства неравенств. В качестве примера рассмотрим доказательство неравенства, называемое неравенством Бернулли, которое имеет следующий вид:
(4)
при всех натуральных значениях n и для всех х> - 1.
При n = 1 это неравенство справедливо, так как 1 + х = 1 + x.
Предположим, что оно справедливо при n = k>1, т. е. справедливо
Докажем, что оно верно и для n = k+1: умножим обе части равенства на 1 + х:
Учитывая, что kx2 0 и, следовательно, 1 + kx + x + kx2 1 + kx + x = 1+ x(k + 1). Тогда имеем:
(1 + x)k+1 1 + (k + 1)x.
Таким образом, мы показали, что неравенство (4) верно для n =1, и в предположении, что оно верно для n = k, доказали его справедливость для n = k+1 Значит, по принципу математической индукции неравенство Бернулли справедливо для всех натуральных значений n.
Пример 4. Используя неравенство Бернулли доказать справедливость неравенства
При n = 1:
Пусть при n = k неравенство верно, т.е.
Докажем справедливость при n = k+1, т.е.
Левую часть представим в виде Используя неравенство Бернулли, имеем
Где
Но
Значит неравенство верно при любом n.
Пример 4. Доказать, что n3 – n делится на 3 при любом n.
При n = 1: 1 – 1 = 0 , 0 делится на 3.
Пусть при n = k : k3 – k делится на 3.
Докажем делимость при n = k + 1:
(k + 1)3 – (k + 1) = k3 + 3k2 + 3k + 1 – k – 1 = k3 + 3(k2 + k) – k = k3 – k + 3(k2 + k).
Т.к. k3 – k делится на 3 (по индуктивному предположению), 3(k2 + k) делится на 3, то и их сумма делится на 3.
Пример 5. Доказать, что сумма кубов трех последовательных натуральных чисел делится на 9.
Т.е. необходимо доказать, что n3 +(n + 1)3 + (n + 2)3 делится на 9.
При n = 1: 1+ 8 + 27 = 36 – делится на 9.
Пусть при n = k : k3 +(k + 1)3 + (k + 2)3 делится на 9.
Докажем, что делимость на 9 имеет место при n = k + 1:
(k+1)3+(k+2)3+(k+3)3 = (k+2)3 + k3 +3k2 +3k +1 +k3 + 9k2 +27k+27 = (k+2)2+k3+(k+1)3 +9(k2 +3k + 3), где
(k+2)2+k3+(k+1)3 делится на 9 по индуктивному предположению,
9(k2 +3k + 3) делится на 9.
Следовательно, их сумма делится на 9.
- Лекция 2
- Лекция 3
- Лекция 4
- Лекция 5
- Лекция 13
- Лекция 14
- Лекция 16
- Основные понятия
- Понятие множества. Способы задания множеств.
- Понятие множества. Способы задания множеств.
- Отношения между множествами.
- 3, Операции над множествами.
- Алгебра множеств.
- Теорема о количестве подмножеств конечного множества.
- Формула включений и исключений.
- Лекция 2
- 1.Понятие вектора. Прямое произведение множеств.
- 2.Теорема о количестве элементов прямого произведения.
- Понятие вектора. Прямое произведение множеств.
- Теорема о количестве элементов прямого произведения.
- Лекция 3
- 2. Понятие высказывания.
- 3. Логические операции над высказываниями
- 4.Формулы алгебры логики.
- Лекция 4
- 2. Важнейшие равносильности алгебры логики.
- 3.Равносильные преобразования формул.
- Задачи для самостоятельного решения
- Лекция 5
- Дизъюнктивная нормальная форма.
- Конъюнктивная нормальная форма.
- Проблема разрешимости.
- Лекция 6
- Функции алгебры логики.
- 3. Представление произвольной функции алгебры логики в виде формулы алгебры логики.
- 4.Приложения алгебры логики в технике (релейно-контактные схемы).
- Контрольные вопросы
- Лекция 7
- Совершенная дизъюнктивная нормальная форма.
- Совершенная конъюнктивная нормальная форма.
- Совершенная дизъюнктивная нормальная форма.
- 2.Совершенная конъюнктивная нормальная форма.
- Лекция 8
- 2.Понятие минимальной днф. Метод минимизирующих карт.
- 3.Метод Квайна.
- 4.Метод Карно.
- 5.Постановка задачи минимизации в геометрической форме.
- 6.Сокращенная днф.
- 7.Тупиковая днф. Днф Квайна.
- Лекция 9
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Лекция 10
- Полная система . Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- Независимые системы. Базис замкнутого класса.
- Полная система. Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- 3. Независимые системы. Базис замкнутого класса.
- Лекция 11
- Понятие предиката.
- Логические операции над предикатами.
- 1. Понятие предиката
- 2. Логические операции над предикатами
- Лекция 12
- 2. Формулы логики предикатов.
- Значение формулы логики предикатов.
- 4. Равносильные формулы логики предикатов.
- Лекция 13
- Построение противоположных утверждений.
- 3. Прямая, обратная и противоположная теоремы.
- 4. Необходимые и достаточные условия.
- 5. Доказательство методом от противного.
- Задачи для самостоятельного решения
- Лекция 14
- 2. Использование метода математической индукции для нахождения сумм конечного числа слагаемых
- 3. Использование метода математической индукции для доказательства неравенств и делимости выражений, зависящих от n на некоторое число
- 4. Обобщение метода математической индукции
- Контрольные вопросы
- Лекция 15
- Операции над бинарными отношениями.
- 3. Свойства бинарных отношений.
- 4. Специальные бинарные отношения.
- Контрольные вопросы
- Лекция 16
- Функция
- 1. 4. Отображение
- Обратная функция
- 2. Свойства отображений и функций
- 3.Операции над функциями. Свойства операций
- Контрольные вопросы
- Лекция 17
- Основные понятия .
- 2. Смежность, инцидентность, степени вершин.
- 3. Способы задания графов
- Маршруты в неориентированном графе
- Операции над графами.
- Связность. Компоненты связности
- Контрольные вопросы
- Лекция 18
- 2. Метрические характеристики неориентированного графа
- Минимальные маршруты в нагруженных графах
- Задачи на деревьях
- Цикловой ранг графа. Цикломатическое число
- Контрольные вопросы
- Лекция 19
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи.
- Контрольные вопросы
- Лекция 20
- Двудольный граф. Условие существования двудольного графа
- Паросочетания . Реберные покрытия
- Двудольный граф. Условие существования двудольного графа
- Паросочетания. Реберные покрытия
- Контрольные вопросы
- Лекция 21
- Основные определения
- Алгоритм плоской укладки графа
- Контрольные вопросы
- Лекция 22
- Способы задания ориентированного графа
- Путь в ориентированном графе
- 4. Связность. Компоненты связности в орграфе
- Контрольные вопросы
- Лекция 23
- 2. Минимальные пути в нагруженных орграфах
- 3. Порядковая функция орграфа без контуров
- Контрольные вопросы