Задачи для самостоятельного решения
1. Доказать несправедливость утверждений:
а) «Если дифференцируемая функция у= f(x) имеет в точке х0 вторую производную, равную нулю, то точка х0 – точка перегиба графика функции».
б) «Если числовая последовательность ограничена, то она имеет предел».
в) «Если функция непрерывна в точке х0, то она имеет производную в этой точке».
2. Для каждого из условий выясните, является ли оно необходимым и является ли оно достаточным, чтобы выполнялось неравенство х2 – 3х – 18 0: а) х=1, б) -2 х 5, в) х -3, г) х> -3, д) -1 х 10, е) –3 х 6.
3. Запишите на языке логики предикатов определение: «Функция f(x) называется ограниченной на множестве М, если существует такое неотрицательное число L, что для всех х М, справедливо неравенство |f(x)| M.»
4. В предложениях вместо многоточия поставьте слова «необходимо, но не достаточно», «достаточно, но не необходимо», «не необходимо и недостаточно», «необходимо и достаточно»:
а) Для того, чтобы четырехугольник был прямоугольным…, чтобы длины его диагоналей были равны;
б) Для того, чтобы х2 – 5х + 6 = 0…, чтобы х=3;
в) Для того, чтобы сумма четного числа натуральных чисел была четным числом…, чтобы каждое слагаемое было четным;
г) Для того, чтобы окружность можно было вписать в четырехугольник…, чтобы сумма длин суммы длин его противоположных сторон были равны;
д) Для того, чтобы множество было счетным…, чтобы его элементы можно было записать в виде занумерованной последовательности;
е) Для того, чтобы числовая последовательность имела предел…, чтобы она была ограниченной.
5.Сформулируйте:
а) Необходимый, но недостаточный признак параллелограмма;
б) Необходимый и достаточный признак параллелограмма;
в) Достаточное, но не необходимое условие, чтобы уравнение sinx = a имело решение.
г) Необходимое, но не достаточное условие, чтобы уравнение sinx = a имело решение.
Контрольные вопросы
Записать в виде формулы логики предикатов определение: а) непрерывности функции в точке; б) предела числовой последовательности; в) ограниченной функции.
Как выполняется построение противоположного утверждения к утверждению, заданному в виде формулы логики предикатов? Постройте противоположные утверждения для утверждений из первого пункта контрольных вопросов.
Приведите четыре вида теорем и объясните смысл каждой из них.
Какие из теорем являются равносильными?
Каким должно быть отношение между областями истинности предикатов Р(х) и Q(x), чтобы теорема была истинной? Какой в этом случае из предикатов необходимое и какой достаточное условие?
Какое отношение должно быть между областями истинности предикатов Р(х) и Q(x), чтобы для теоремы была справедлива и обратная теорема? Какой теоремой можно заменить в этом случае прямую и обратную?
Докажите равносильность формул и .
- Лекция 2
- Лекция 3
- Лекция 4
- Лекция 5
- Лекция 13
- Лекция 14
- Лекция 16
- Основные понятия
- Понятие множества. Способы задания множеств.
- Понятие множества. Способы задания множеств.
- Отношения между множествами.
- 3, Операции над множествами.
- Алгебра множеств.
- Теорема о количестве подмножеств конечного множества.
- Формула включений и исключений.
- Лекция 2
- 1.Понятие вектора. Прямое произведение множеств.
- 2.Теорема о количестве элементов прямого произведения.
- Понятие вектора. Прямое произведение множеств.
- Теорема о количестве элементов прямого произведения.
- Лекция 3
- 2. Понятие высказывания.
- 3. Логические операции над высказываниями
- 4.Формулы алгебры логики.
- Лекция 4
- 2. Важнейшие равносильности алгебры логики.
- 3.Равносильные преобразования формул.
- Задачи для самостоятельного решения
- Лекция 5
- Дизъюнктивная нормальная форма.
- Конъюнктивная нормальная форма.
- Проблема разрешимости.
- Лекция 6
- Функции алгебры логики.
- 3. Представление произвольной функции алгебры логики в виде формулы алгебры логики.
- 4.Приложения алгебры логики в технике (релейно-контактные схемы).
- Контрольные вопросы
- Лекция 7
- Совершенная дизъюнктивная нормальная форма.
- Совершенная конъюнктивная нормальная форма.
- Совершенная дизъюнктивная нормальная форма.
- 2.Совершенная конъюнктивная нормальная форма.
- Лекция 8
- 2.Понятие минимальной днф. Метод минимизирующих карт.
- 3.Метод Квайна.
- 4.Метод Карно.
- 5.Постановка задачи минимизации в геометрической форме.
- 6.Сокращенная днф.
- 7.Тупиковая днф. Днф Квайна.
- Лекция 9
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Некоторые логические операции. Двоичное сложение.
- Полином Жегалкина.
- Лекция 10
- Полная система . Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- Независимые системы. Базис замкнутого класса.
- Полная система. Достаточное условие полноты.
- Критерий полноты системы булевых функций.
- 3. Независимые системы. Базис замкнутого класса.
- Лекция 11
- Понятие предиката.
- Логические операции над предикатами.
- 1. Понятие предиката
- 2. Логические операции над предикатами
- Лекция 12
- 2. Формулы логики предикатов.
- Значение формулы логики предикатов.
- 4. Равносильные формулы логики предикатов.
- Лекция 13
- Построение противоположных утверждений.
- 3. Прямая, обратная и противоположная теоремы.
- 4. Необходимые и достаточные условия.
- 5. Доказательство методом от противного.
- Задачи для самостоятельного решения
- Лекция 14
- 2. Использование метода математической индукции для нахождения сумм конечного числа слагаемых
- 3. Использование метода математической индукции для доказательства неравенств и делимости выражений, зависящих от n на некоторое число
- 4. Обобщение метода математической индукции
- Контрольные вопросы
- Лекция 15
- Операции над бинарными отношениями.
- 3. Свойства бинарных отношений.
- 4. Специальные бинарные отношения.
- Контрольные вопросы
- Лекция 16
- Функция
- 1. 4. Отображение
- Обратная функция
- 2. Свойства отображений и функций
- 3.Операции над функциями. Свойства операций
- Контрольные вопросы
- Лекция 17
- Основные понятия .
- 2. Смежность, инцидентность, степени вершин.
- 3. Способы задания графов
- Маршруты в неориентированном графе
- Операции над графами.
- Связность. Компоненты связности
- Контрольные вопросы
- Лекция 18
- 2. Метрические характеристики неориентированного графа
- Минимальные маршруты в нагруженных графах
- Задачи на деревьях
- Цикловой ранг графа. Цикломатическое число
- Контрольные вопросы
- Лекция 19
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи
- Эйлеровы цепи и циклы
- Гамильтоновы циклы и цепи.
- Контрольные вопросы
- Лекция 20
- Двудольный граф. Условие существования двудольного графа
- Паросочетания . Реберные покрытия
- Двудольный граф. Условие существования двудольного графа
- Паросочетания. Реберные покрытия
- Контрольные вопросы
- Лекция 21
- Основные определения
- Алгоритм плоской укладки графа
- Контрольные вопросы
- Лекция 22
- Способы задания ориентированного графа
- Путь в ориентированном графе
- 4. Связность. Компоненты связности в орграфе
- Контрольные вопросы
- Лекция 23
- 2. Минимальные пути в нагруженных орграфах
- 3. Порядковая функция орграфа без контуров
- Контрольные вопросы